Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1106
    Keywords: Key words Forebrain ischemia ; Hyperglycemia ; Hippocampus ; Bioenergetic state ; Cyclosporin A ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  A recent study from this laboratory has shown that brief transient ischemia (2 min 30 s) in normo- and hyperglycemic rats leads to moderate neuronal necrosis in CA1 cells of the hippocampus, of equal density in the two groups. However, hyperglycemic animals failed to depolarize during the ischemia, nor did they show a decrease in extracellular calcium concentration. The present study was undertaken to study the metabolic correlates to these unexpected findings. Normoglycemic (plasma glucose ∼6 mM) and hyperglycemic (∼20 mM) rats were subjected to ischemic periods of 1 min and 2 min 15 s (2 min 30 s with freezing delay considered), and their brains were frozen in situ. Samples of dorsal hippocampus were dissected at –22°C and extracted for the measurement of phosphocreatine (PCr), creatine, ATP, ADP, AMP, glucose, glycogen, and lactate. Normoglycemic animals showed rapid depletion of PCr, ATP, glucose, and glycogen, and a rise in lactate content to 10–12 mM·kg–1 during the ischemia. Hyperglycemic animals displayed a more moderate rate of fall of PCr and ATP, with ATP values exceeding 50% of control after 2 min 30 s. Glycogen stores were largely maintained, but degradation of glucose somewhat enhanced the lactic acidosis. The results demonstrate that hyperglycemic rats maintained ATP at levels sufficient to prevent cell depolarization and calcium influx during the ischemic period. However, the metabolic perturbation observed must have been responsible for the delayed neuronal damage. We speculate that lowered ATP, increased inorganic P, and oxidative stress triggered a delayed mitochondrial permeability transition (MPT), which led to delayed neuronal necrosis. This assumption was supported by a second series of experiments in which CA1 damage in hyperglycemic rats was prevented by cyclosporin A, a virtually specific inhibitor of the MPT.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 559 (1989), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 46 (1986), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The objective of the present study was to estimate extracellular pH (pHe) and intracellular pH (pHi) during near-complete forebrain ischemia in the rat, and to evaluate the relative importance of lactic acidosis and rise in tissue Pco2, (Ptco2) in causing pHe and pHi to fall. The animals, which were ventilated, normoxic, normocapnic, and normothermic, were subjected to 15 min of ischemia, either without or with 30–60 min of recirculation. Ptco, was measured with a tissue electrode, pH, with a double-barrel liquid ion-exchanger microelectrode, changes in extracellular fluid (ECF) volume by impedance measurements, tissue CO, content by a microdiffusion technique, and labile tissue metabolites by enzymatic fluorometric methods. Ischemia caused Ptco2 to rise to between 95 and 190 mm Hg (mean 149 mm Hg), and pH, to fall by 0.45–1.05 units (mean 0.70 units). During recovery, Ptco, normalized within 5 min and pHe after 15–30 min. During ischemia, high-energy phosphates were depleted and tissue lactate content increased to 15 μmol · g−1. The total CO2 content (Tco2) was minimally or moderately reduced (normal, 11.9 μmol · g−1; range of ischemic values, 7.9–12.1 μmol · g0-, this range probably reflecting variable amounts of remaining blood flow. Impedance measurements demonstrated that ECF volume during ischemia was reduced to 55% of control, with gradual normalization during the first 15–30 min of recirculation. From values for Ptco2, Tco2, [HCO3−]e, and ECF volume, [HCO3−]i, and pH, could be calculated. These values pertain to an idealized homogeneous intracellular compartment, and the methods used cannot detect whether different intracellular compartments diverge in their acid-base responses. Ischemia caused pH, to fall from 7.05 to a mean of 6.15 (range 5.9–6.4). Previous data, and those obtained at present, suggest that pH, normalizes after 15 min of recirculation, with a subsequent, secondary alkalosis. Calculations indicate that about half of the pH, change was due to the hypercapnia. In intracellular fluid, though, the hypercapnia must play a minor role in reducing pH, the predominate cause of the acidosis being lactic acid production.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The rat brain-derived neurotrophic factor (BDNF) gene consists of four short 5-exons linked to separate promoters and one 3′-exon encoding the mature BDNF protein. Using in situ hybridization we demonstrate here that kindling-induced seizures, cerebral ischaemia and insulin-induced hypoglycaemic coma increase BDNF mRNA levels through insult- and region-specific usage of three promoters within the BDNF gene. Both brief (2 min) and longer (10 min) periods of forebrain ischaemia induced significant and major increases only of exon III mRNA in the dentate gyrus. Following hypoglycaemic coma (1 and 30 min), exon III mRNA was markedly elevated in the dentate gyrus and, in addition, exon I mRNA showed a moderate increase. Single and recurrent (n= 40) hippocampal seizures significantly increased expression of exon I, II and III mRNAs in the dentate gyrus granule cells. After recurrent seizures, including generalized convulsions, there were also major increases of both exon I and III mRNAs in the CA3 region, amygdala, piriform cortex and neocortex, whereas in the hippocampal CA1 sector marked elevations were detected only for exon III mRNA. The insults had no effect on the level of exon IV mRNA in the brain. The region- and insult-specific pattern of promoter activation might be of importance for the effectiveness of protective responses as well as for the regulation of plastic changes following brain insults.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Extracellular adenosine is dramatically increased during cerebral ischaemia and is considered to be neuroprotective due to its inhibitory effect on synaptic transmission mediated by the adenosine A1 receptor (A1R). We investigated the importance of the A1R in a mouse model of global ischaemia and in a murine hippocampal slice culture model of in vitro ischaemia, using mice with the A1R gene deleted. In brains from mice lacking the A1R, damage induced by global ischaemia was similar to that in wild-type animals. In contrast, treatment with a selective A1R antagonist [8-cyclo-pentyl theophylline (8-CPT)], administered before the ischaemic insult in naive wild-type mice, exacerbated the neuronal damage following global ischaemia. Although the inhibitory action of adenosine on excitatory neurotransmission in hippocampal slices was lost in A1R knockout mice, there was no difference in damage between slices from wild-type and knockout mice after in vitro ischaemia. The results suggest that some effects of the A1R are compensated for in knockout animals.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1520-4804
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 99 (1994), S. 43-55 
    ISSN: 1432-1106
    Keywords: Status epilepticus ; Brain damage Hypothermia ; Hyperthermia ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The influence of hyperthermia and hypothermia on epileptic brain damage was studied in rats, in which status epilepticus was induced by flurothyl. Histopathological changes were examined by light microscopy after 1 or 7 days of recovery. Two series of animals were studied. In the first, short periods of seizures (20 and 25 min) were employed to examine whether moderate hyperthermia (39.5° C) would aggravate epileptic brain damage, and a longer period (45 min) was used to investigate whether moderate hypothermia (32.5° C) would ameliorate the damage. The second series investigated whether brief periods of status epilepticus (10 min) would cause brain damage if hyperthermia were high or excessive. For this series, animals with body temperatures of 37.0, 39.0, and 41.0° C were studied. Data from normothermic animals (37.5° C) confirmed previously described neuronal damage. Although hyperthermic animals failed to showe increased damage in the CA1 sector, or in the hilar region of the dentate gyrus, they showed enhanced damage in the neocortex and globus pallidus (GP). In substantia nigra pars reticulata (SNPR) four out of five hyperthermic animals had bilateral infarcts after 20 min of status epilepticus, whereas no normothermic animal showed such damage. Hypothermia seemed to ameliorate epileptic brain damage in the neocortex (n.s.) and GP (P 〈 0.05) following status epilepticus for 45 min. Three out of seven hypothermic animals had mild SNPR involvement compared to severe infarction of the nucleus in five out of six normothermic animals (P 〈 0.05). Thus, hyperthermia aggravated and hypothermia ameliorated epileptic brain damage both in regions showing selective neuronal necrosis (neocortex) and in regions developing pan-necrosis (GP and SNPR). The second series displayed an unexpected result of excessive hyperthermia. Animals subjected to only 10 min of status epilepticus at a temperature of 41° C showed not only neocortical lesions, but also moderate to extensive damage to the hippocampus (CA1, subiculum, and dentate gyrus). It is concluded that at high body and brain temperature, brief periods of status epilepticus can yield extensive brain damage, primarily affecting the hippocampus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-1106
    Keywords: Dimethylthiourea ; Brain ; Ischaemia ; Middle cerebral artery occlusion ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The objective of this study was to assess whether dimethylthiourea (DMTU), an established free radical scavenger, ameliorates ischaemic damage due to 2–3 h of transient middle cerebral artery (MCA) occlusion, induced by an intraluminal filament. A major point adressed was whether DMTU given before MCA occlusion only delayed the “maturation” of the damage, or if it had a lasting effect on infarct size. The end point was morphological, and either encompassed triphenyltetrazolium chloride (TTC) staining of tissue slices after 24 h or 48 h of recovery, or histopathological assessment of infarct size after 7 days of recovery. In a preliminary series of experiments, rats were subjected to 3 h of MCA occlusion, and infarct volume was assessed by TTC staining after 24 h of recovery. DMTU in a dose of 750 mg/kg reduced infarct volume by more than 50%. However, due to a high mortality rate, that protocol was not subsequently pursued. When the ischaemia duration was reduced to 2 h and the DMTU dose to 400 mg/kg, a similar amelioration of the tissue damage was observed. However, since DMTU reduced a spontaneous rise in body temperature to 39.0–39.5°C, DMTU-treated animals in the main series of experiments with 24 and 48 h of recovery were treated so that they had the same temperature rise as the saline controls. Under such constant temperature conditions, the effect of DMTU at 24 h of recovery was borderline (P= 0.052) and at 48 h it was nil. The lack of a lasting effect of DMTU was supported by the findings on evaluation of infarct area after 7 days of recovery. The results raise the important question whether DMTU, and perhaps other free radical scavengers, delay rather than ameliorate the ischaemic lesion developing after transient MCA occlusion.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-1106
    Keywords: Ischemia ; Brain damage ; Substantia nigra pars reticulata ; Excitatory amino acids ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Preischemic hyperglicemia worsens brain damage after ischemia, and characteristically leads to post-ischemic seizures and a pan-necrotic lesion in substantia nigra pars reticulata (SNPR). The excitatory input to SNPR could contribute to the damage observed. By performing a unilateral frontal cortex lesion 6–19 days prior to the ischemia, we wanted to explore whether a decrease in excitatory input to the ipsilateral SNPR ameliorate the seizures or alter the light microscopical damage in SNPR. Our results demonstrate that unilateral frontal cortex lesion did not alter the development of fatal post-ischemic seizures after 10 min of ischemia in hyperglycemic subjects. Thus, 7/8 animals developed seizures and died within 20 h of recovery. This study also failed to show any difference between the left and right side in post-ischemic SNPR damage after 15 h of recovery in animals with preischemic unilateral frontal cortex lesion. Furthermore, no side difference was observed in any other brain region evaluated. The results thus suggest that the pan-necrotic lesion in SNPR after hyperglicemic ischemia is not caused by excessive excitatory input from frontal cortex. A decrease in the GABA-ergic inhibitory input from caudoputamen to SNPR may be a more important mechanism for the ensuing excitotoxic post-ischemic SNPR damage, and for seizure development.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...