Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The aggravating effect of hyperglycemia on ischemic brain injury can be mimicked in a model of in vitro ischemia (IVI) using murine hippocampal slice cultures. Using this model, we found that the damage in the CA1 region following IVI in the absence or presence of 40 mm glucose (hyperglycemia) is highly temperature dependent. Decreasing the temperature from 35 to 31°C during IVI prevented cell death, whereas increasing the temperature by 2°C markedly aggravated damage. As blockade of the mitochondrial permeability transition (MPT) is equally effective as hypothermia in preventing ischemic cell death in vivo, we investigated whether inhibition of MPT or of caspases was protective following IVI. In the absence of glucose, the MPT blockers cyclosporin A and MeIle4-CsA but not the immunosuppressive compound FK506 diminished cell death. In contrast, following hyperglycemic IVI, MPT blockade was ineffective. Also, the pan-caspase inhibitor Boc-Asp(OMe)fluoromethyl ketone did not decrease cell death in the CA1 region following IVI or hyperglycemic IVI. We conclude that cell death in the CA1 region of organotypic murine hippocampal slices following IVI is highly temperature dependent and involves MPT. In contrast, cell death following hyperglycemic IVI, although completely prevented by hypothermia, is not mediated by mechanisms that involve MPT or caspase activation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: We measured and manipulated intracellular potassium (K+) fluxes in cultured hippocampal neurons in an effort to understand the involvement of K+ in neuronal death under conditions of ischemia and exposure to apoptotic stimuli. Measurements of the intracellular K+ concentration using the fluorescent probe 1,3-benzenedicarboxylic acid, 4,4′-[1,4,10,13-tetraoxa-7,16-diazacyclooctadecane-7,16-diylbis(5-methoxy-6,2-benzofurandiyl)]bis-, tetrakis [(acetyloxy) methyl] ester (PBFI) revealed that exposure of neurons to cyanide (chemical hypoxia), glutamate (excitotoxic insult) or staurosporine (apoptotic stimulus) results in efflux of K+ and cell death. Treatment of neurons with 5-hydroxydecanoate (5HD), an inhibitor of mitochondrial K+ channels, reduced K+ fluxes in neurons exposed to each insult and increased the resistance of the cells to death. K+ efflux was attenuated, levels of oxyradicals were decreased, mitochondrial membrane potential was stabilized and release of cytochrome c from mitochondria was attenuated in neurons treated with 5HD. K+ was rapidly released into the cytosol from mitochondria when neurons were exposed to the K+ channel opener, diazoxide, or to the mitochondrial uncoupler, carbonyl cyanide 4(trifluoromethoxy)phenylhydrazone (FCCP), demonstrating that the intramitochondrial K+ concentration is greater than the cytosolic K+ concentration. The release of K+ from mitochondria was followed by efflux through plasma membrane K+ channels. In vivo studies showed that 5HD reduces ischemic brain damage without affecting cerebral blood flow in a mouse model of focal ischemic stroke. These findings suggest that intracellular K+ fluxes play a key role in modulating neuronal oxyradical production and cell survival under ischemic conditions, and that agents that modify K+ fluxes may have therapeutic benefit in stroke and related neurodegenerative conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Mitochondria are important in the pathophysiology of several neurodegenerative diseases, and mitochondrial production of reactive oxygen species (ROS), membrane depolarization, permeability changes and release of apoptogenic proteins are involved in these processes. Following brain insults, cell death often occurs in discrete regions of the brain, such as the subregions of the hippocampus. To analyse mitochondrial structure and function in such subregions, only small amounts of mitochondria are available. We developed a protocol for flow cytometric analysis of very small samples of isolated brain mitochondria, and analysed mitochondrial swelling and formation of ROS in mitochondria from the CA1 and CA3 regions of the hippocampus. Calcium-induced mitochondrial swelling was measured, and fluorescent probes were used to selectively stain mitochondria (nonyl acridine orange), to measure membrane potential (tetramethylrhodamine-methyl-ester, 1,1′,3,3,3′,3′-hexamethylindodicarbocyanine-iodide) and to measure production of ROS (2′,7′-dichlorodihydrofluorescein-diacetate). We found that formation of ROS and mitochondrial permeability transition pore activation were higher in mitochondria from the CA1 than from the CA3 region, and propose that differences in mitochondrial properties partly underlie the selective vulnerability of the CA1 region to brain insults. We also conclude that flow cytometry is a useful tool to analyse the role of mitochondria in cell death processes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The mitochondrial permeability transition (mPT) is increasingly implicated in neuronal cell death. In the present study, isolated respiring brain mitochondria were examined for their ability to undergo calcium-induced mPT and their sensitivity to mPT inhibition by cyclosporin A (CsA). Previous studies have suggested a heterogeneous response to calcium, a limitation of CsA inhibition, and a relative resistance in the ability of respiring brain mitochondria to undergo mPT. Using fluorometric and electron microscopic analyses, we found that virtually the whole population of respiring brain mitochondria readily undergo mPT and swell upon calcium exposure. Further, brain mitochondria were highly sensitive to CsA which potentiated morphological recovery after transient swelling as well as completely blocked mPT induction in the presence of a low concentration of ADP. Using flow cytometry, which allows analysis of individual mitochondria, we demonstrate that both brain and liver mitochondria display homogeneous responses to calcium-induced mPT. We conclude that the mPT is one likely target for the broad in vivo neuroprotective effects displayed by CsA when allowed to penetrate the blood–brain barrier, and that development of compounds inhibiting mPT may prove beneficial for the treatment of severe brain disease.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The rat brain-derived neurotrophic factor (BDNF) gene consists of four short 5-exons linked to separate promoters and one 3′-exon encoding the mature BDNF protein. Using in situ hybridization we demonstrate here that kindling-induced seizures, cerebral ischaemia and insulin-induced hypoglycaemic coma increase BDNF mRNA levels through insult- and region-specific usage of three promoters within the BDNF gene. Both brief (2 min) and longer (10 min) periods of forebrain ischaemia induced significant and major increases only of exon III mRNA in the dentate gyrus. Following hypoglycaemic coma (1 and 30 min), exon III mRNA was markedly elevated in the dentate gyrus and, in addition, exon I mRNA showed a moderate increase. Single and recurrent (n= 40) hippocampal seizures significantly increased expression of exon I, II and III mRNAs in the dentate gyrus granule cells. After recurrent seizures, including generalized convulsions, there were also major increases of both exon I and III mRNAs in the CA3 region, amygdala, piriform cortex and neocortex, whereas in the hippocampal CA1 sector marked elevations were detected only for exon III mRNA. The insults had no effect on the level of exon IV mRNA in the brain. The region- and insult-specific pattern of promoter activation might be of importance for the effectiveness of protective responses as well as for the regulation of plastic changes following brain insults.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The dentate gyrus (DG) is one of the few regions in the brain that continues to produce new neurons throughout adulthood. Seizures not only increase neurogenesis, but also lead to death of DG neurons. We investigated the relationship between cell death and neurogenesis following seizures in the DG of adult rats by blocking caspases, which are key components of apoptotic cell death. Multiple intracerebroventricular infusions of caspase inhibitors (pancaspase inhibitor zVADfmk, and caspase 3 and 9 inhibitor) prior to, just after, 1 day after, and 1 week following 2 h of lithium–pilocarpine-induced status epilepticus reduced the number of terminal deoxynucleotidyl transferase-mediated fluorescein-dUTP nick-end labelled (TUNEL) cells and increased the number of bromodeoxyuridine (BrdU) -stained proliferated cells in the subgranular zone at 1 week. The caspase inhibitor-treated group did not differ from control at 2 days or 5 weeks following the epileptic insult. Our findings suggest that caspases modulate seizure-induced neurogenesis in the DG, probably by regulating apoptosis of newly born neurons, and that this action can be suppressed transiently by caspase inhibitors. Furthermore, although previous studies have indicated that increased neuronal death can trigger neurogenesis, we show here that reduction in apoptotic death may be associated with increased neurogenesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1106
    Keywords: Epilepsy ; GABA ; Noradrenaline Graft ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Gamma-aminobutyric acid (GABA)-releasing polymer matrices were implanted bilaterally, immediately dorsal to the substantia nigra, in rats previously kindled in the amygdala. Two days after implantation, rats with GABA-releasing matrices exhibited only focal limbic seizures in response to electrical stimulation, whereas animals with control matrices devoid of GABA had generalized convulsions. GABA release from the polymer matrices was high during the first days after implantation, as demonstrated both in vitro and, using microdialysis, in vivo. The anticonvulsant effect was no longer observed at 7 and 14 days at which time GABA release was found to be low. In a parallel experiment, polymer matrices containing noradrenaline (NA) were implanted bilaterally into the hippocampus of rats with extensive forebrain NA depletion induced by an intra-ventricular 6-hydroxydopamine injection. No effect on the development of hippocampal kindling was observed, despite extracellular NA levels exceeding those of rats with intrahippocampal locus coeruleus grafts that have previously been shown to retard kindling rate. The results indicate that GABA-releasing implants located in the substantia nigra region can suppress seizure generalization in epilepsy, even in the absence of synapse formation and integration with the host brain. In contrast, the failure of NA-releasing polymer matrices to retard the development of seizures in NA-depleted rats suggests that such an effect can only be exerted by grafts acting through a well-regulated, synaptic release of NA.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...