Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (2)
  • Behaviour  (1)
  • Brain  (1)
  • 1
    ISSN: 1432-1912
    Keywords: Key words Atipamezole ; α2-Adrenoceptor antagonism ; Learning ; Noradrenaline ; Stress ; Subchronic treatment ; Behaviour
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The effects of an α2-adrenoceptor antagonist, atipamezole, on exploratory behaviour in a novel environment, spontaneous motor activity and active avoidance learning were studied after acute injection and continuous infusion (0.1 mg/kg h) for 24 h and 6–9 days in rats. The effects of atipamezole on biogenic amines and their main metabolites in brain were studied after an acute injection (0.3 mg/kg s.c.) and continuous infusion (0.1 mg/kg h) for 24 h and 10 days. The level of central α2-adrenoceptor antagonism and the drug concentration in blood and in the brain were measured after continuous infusion for 24 h and 10 days. In behavioural tests, atipamezole had no effect on spontaneous motor activity at any of the doses studied. However, after both acute administration and continuous 24-h infusion, atipamezole decreased exploratory behaviour in a staircase test, but no longer after 6 days of continuous infusion. Acute administration of atipamezole impaired performance in active avoidance learning tests causing a learned helplessness-like behaviour. When the training was started after 7 days of continuous infusion, atipamezole significantly improved active avoidance learning. There was a significant increase in the metabolite of noradrenaline (NA), 3-methoxy-4-hydroxyphenylethyleneglycol sulphate (MHPG-SO4), after 24 h but not any longer after 10 days of continuous atipamezole infusion, although the extent of central α2-adrenoceptor antagonism was unchanged and the atipamezole concentration present in brain was even elevated at 10 days compared to levels after 24-h infusion. In conclusion, these results reveal that acute and sub-chronic atipamezole treatments have different and even opposite effects on behaviour in novel, stressful situations. After acute treatment, atipamezole potentiates reaction to novelty and stress, causing a decrease in exploratory activity and impairment in shock avoidance learning. After subchronic treatment, there was no longer any effect on exploratory behaviour and, in fact, there was an improvement in the learning of a mildly stressful active avoidance test. The changes in behaviour occurred in parallel with attenuation in the MHPG-SO4-increasing effect, thus the suppressed behaviour in the present test conditions after acute atipamezole injection is associated with a major increase in central NA release. The results support the role of α2-adrenoceptors and noradrenergic system in reactions both to novelty and stress and have possible implications in cognitive functions as well as in depression.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0738
    Keywords: 2,4-Dichlorophenoxyacetic acid ; Biogenic amines ; Brain ; Cerebrospinal fluid ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Effects of single subcutaneous doses of sodium 2,4-dichlorophenoxyacetate (2,4-D-Na) on biogenic amines and their acidic metabolites in rat brain and cerebrospinal fluid (CSF) were analyzed by high pressure liquid chromatography. After 200 mg/kg 2,4-D-Na, the cerebral concentration of 5-hydroxytryptamine (5-HT) was increased slightly and that of 5-hydroxyindoleacetic acid (5-HIAA) roughly 3-fold between 1 and 8 h after the administration. There was also a tendency towards slightly lowered dopamine (DA) levels. No statistically significant changes in brain concentrations of noradrenaline (NA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) or tryptophan (TRY) were found. At the same time, however, the maximal increase in DOPAC, HVA and 5-HIAA concentrations in the CSF was 2.3–5.8-fold. The dependency of biogenic amines and metabolites on 2,4-D-Na dose was studied by injecting s.c. 0, 10, 30 and 100 mg/kg and sacrificing the rats at 2 h. In the brain, there was a dose-dependent increase in concentrations of 5-HIAA (at the two highest doses) and HVA (at the highest dose) while in the CSF those of all three acidic metabolites increased at the two highest doses. The 10 mg/kg dose had no effect. The results agree with the hypothesis that 2,4-D inhibits the organic acid transport out of the brain, which should then result in increased cerebral levels of acidic metabolites of biogenic amines, but it may also have effects on the activity of serotoninergic and dopaminergic neurones.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...