Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1335
    Keywords: Key words Chemical carcinogens ; List of MAK and BAT values ; Cancer risk ; carcinogen classification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Carcinogenic chemicals in the work area were previously classified into three categories in section III of the German List of MAK and BAT values (the list of values on maximum workplace concentrations and bio‐logical tolerance for occupational exposures). This classification was based on qualitative criteria and reflected essentially the weight of evidence available for judging the carcinogenic potential of the chemicals. In the new classification scheme the former sections IIIA1, IIIA2, and IIIB are retained as categories 1, 2, and 3, to correspond with European Union regulations. On the basis of our advancing knowledge of reaction mechanisms and the potency of carcinogens, these three categories are supplemented with two additional categories. The essential feature of substances classified in the new categories is that exposure to these chemicals does not contribute significantly to the risk of cancer to man, provided that an appropriate exposure limit (MAK value) is observed. Chemicals known to act typically by non-genotoxic mechanisms, and for which information is available that allows evaluation of the effects of low-dose exposures, are classified in category 4. Genotoxic chemicals for which low carcinogenic potency can be expected on the basis of dose/response relationships and toxicokinetics and for which risk at low doses can be assessed are classified in category 5. The basis for a better differentiation of carcinogens is discussed, the new categories are defined, and possible criteria for classification are described. Examples for category 4 (1,4-dioxane) and category 5 (styrene) are presented.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of cancer research and clinical oncology 92 (1978), S. 157-176 
    ISSN: 1432-1335
    Keywords: Carcinogenic Epoxides and DNA Repair ; Carcinogene Epoxide und DNA Reparatur
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Description / Table of Contents: Zusammenfassung Äther-permeabilisierte (nukleotid-permeable) Escherichia coli Zellen zeigten DNA Exzisionsreparatur nach Inkubation mit den folgenden K-Region Epoxiden: 7-Methyl- und 7,12-Dimethyl-benz[a]anthracen-5,6-oxid, Chrysen-5,6-oxid und Benz[a]pyren-4,5-oxid. Diese DNA Exzisionsreparatur trat bei uvrA und uvrB Mutanten nicht auf. Das K-Region Epoxid Phenanthren-9,10-oxid war bei allen geprüften E.coli Stämmen wirkungslos. Im Gegensatz zu den bei Wildtypzellen aktiven K-Region Epoxiden, riefen 1,2,3,4-Diepoxybutan und die Epoxide des Tumor Promoters TPA (12-O-Tetradecanoyl-phorbol-13-acetat) auch bei uvrA und uvrB Mutanten DNA Reparatur hervor. Die Enzymaktivitäten, die einzelne Reparaturschritte katalysierten, wurden über a) die Reparaturpolymerisation und b) die Größenabnahme denaturierter DNA gemssen. a) Die Epoxid-induzierte Reparaturpolymerisation erwies sich als leicht erfaß-barer und quantifizierbarer Reparatureffekt. Keines der geprüften K-Region Epoxide stimulierte DNA Reparatursynthese in uvrA oder uvrB Mutanten; dies weist darauf hin, daß die uvrA-, und uvrB- kontrollierte UV-Endonuklease die Exzisionsreparatur einleitet, indem sie die Epoxid-modifizierte DNA spaltet. 1,2,3,4-Diepoxybutan und die TPA-6,7-oxide induzierten DNA Reparatur in Defektmutanten, die nicht in der Lage sind, UV-Schäden zu beseitigen, wenngleich der Grad der Induktion geringer war als in Wildtypzellen. Dies zeigt, daß uvr-unabhängige Inzisionsschritte an der Reparatur beteiligt sind. Keines der Epoxide rief Reparaturpolymerisation in einer Defektmutante (polA 107) hervor, die durch einen Funktionsausfall der 5′-3′ exonukleolytischen Aktivität der DNA Polymerase I gekennzeichnet ist. Dies macht deutlich, daß die Exonuklease VI bei der Ausschneidung Epoxid-geschädigter Nukleotide eine zentrale Rolle spielt. Die nur geringe Reparaturpolymerisation in polA 1 Zellen zeigt, daß DNA Polymerase I das wichtigste polymerisierende Enzym darstellt. b) Als Folge der Behandlung mit 7-Methyl-benz[a]anthracen-5,6-oxid erfuhr die DNA von Wildtypzellen, im Gegensatz zu uvrA-Mutanten, nach Denaturierung und Sedimentation in alkalischen Sucrosegradienten eine Größenabnahme; dies ist ein Hinweis darauf, daß reparaturspezifische endonukleolytische Spaltung stattfand. Für die Inzision war ATP erforderlich. Offensichtlich kann die UV-Endonuklease die DNA Reparatur nur einleiten, wenn sie über ATP als Cofaktor verfügt.
    Notes: Summary Ether-permeabilized (nucleotide-permeable) Escherichia coli cells exhibited DNA excision repair when exposed to the following carcinognic K-region epoxides: 7-methyl- and 7,12-dimethyl-benz[a]anthracene-5,6-oxide, chrysene-5,6-oxide and benzo[a]pyrene-4,5-oxide. This DNA excision repair was missing in uvrA and uvrB mutant cells. The K-region epoxide phenanthrene-9,10-oxide was ineffective in all E.coli strains tested. In contrast to the K-region epoxides which where found active only in wild type cells, 1,2,3,4-diepoxybutane and the 6,7-epoxides of the tumor promoter TPA (12-O-tetradecanoyl-phorbol-13-acetate) elicited DNA repair in uvr A, uvrB mutant cells as well. Enzymic activities catalyzing particular repair steps were identified by determining a) repair polymerization and b) size reduction of denatured DNA. a) An easily quantifiable effect in E.coli wild type cells was epoxide-induced repair polymerization. None of the K-region epoxides tested stimulated DNA repair synthesis in uvrA, uvrB mutant cells, indicating that the uvrA-, uvrB- controlled UV-endonuclease initiated excision repair by cleaving epoxide-damaged DNA. 1,2,3,4-Diepoxybutane and the TPA-6,7-oxides induced DNA repair polymerization in uvr-deficient cells, although to a lesser extent than in wild type cells, suggesting the involvement of uvr-independent incision steps. None of the epoxides induced repair polymerization in a mutant (polA 107) lacking the 5′-3′ exonucleolytic activity of DNA polymerase I (exonuclease VI). The absence of any repair polymerization in the polA 107 mutant indicates that the exonuclease VI plays a central role in removing epoxide-damaged nucleotides. As evidenced by greatly reduced levels of repair polymerization measured in polA 1 cells, DNA polymerase I was the main polymerizing enzyme. b) As a consequence of treatment with 7-methyl-benz[a]anthracene-5,6-oxide, DNA from wild type cells, contrary to uvrA mutant cells, showed size reduction after denaturation and sedimentation in alkaline sucrose gradients. This is explained by repair-specific endonucleolytic cleavage of damaged DNA. The incision required the presence of ATP indicating that functional UV-endonuclease needs ATP as a cofactor.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...