Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1440
    Keywords: Mutant DNA polymerases ; Mutator Properties ; DNA binding domain ; dNTP binding Domain ; Malignant transformation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract To investigate whether DNA replication in malignant cells deviates from that of normal cells we compared DNA polymerases α, δ, and ɛ from normal rat liver to the enzymes from fast-growing (malignant) Novikoff hepatoma cells. DNA polymerases were purified 300-fold by three chromatographic steps. Characterization included measurement of physicochemical constants (including sedimentation coefficients, diffusion coefficients, calculation of relative molecular masses), quantitation of catalytic activities using specific DNA primer templates (K m values) and inhibitors (K i values), and identification of polypeptides which are strongly associated with DNA polymerases. Comparison of physicochemical and catalytic properties of DNA polymerases from both sources revealed similarities but also some important differences. DNA primase associated with DNA polymerase α, and 3′–5′ exonuclease accompanying DNA polymerases δ and ɛ had similar activities. In contrast, the DNA-binding domain of DNA polymerases α and ɛ from hepatoma cells was altered since K m values, determined with the specific primer templates gapped calf thymus DNA and poly(dA·dT), were higher. Furthermore, sedimentation and diffusion coefficients, Stokes' radii, and frictional coefficient ratios of DNA polymerases α and ɛ from malignant cells significantly deviated. In addition, when the dNTP-binding sites were probed with specific inhibitors (aphidicolin, butylphenyl-dGTP, carbonyldiphosphonate, and dideoxy-TTP), significantly lower K i values were obtained for the polymerases from Novikoff cells indicating lower affinity of the dNTP binding site to deoxyribonucleoside 5′-triphosphates. Altered catalytic and molecular properties are possibly a consequence of malignant transformation. It is to be expected that similar changes occur in DNA polymerases of other tumors. In particular, diminished affinity to primer templates and weakened nucleotide binding leads to lowered specificity of nucleotide selection in the base-pairing process and is therefore likely to cause an enhanced mutation rate during malignant progression.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 222 (1973), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of cancer research and clinical oncology 90 (1977), S. 37-69 
    ISSN: 1432-1335
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Description / Table of Contents: Zusammenfassung Superhelikale doppelsträngige DNA der Phagen φX 174 und PM2 wurde in wäßriger Lösung bei neutralem pH mit direkten und indirekten Carcinogenen umgesetzt. Anschließend wurde die Carcinogen-behandelte DNA einer Geschwindigkeitssedimentation in neutraler und alkalischer Sucrose unterworfen, um Einzelstrangbrüche quantitativ zu erfassen. Kurzzeitige Reaktion der Phagen DNA mit den direkten Carcinogenen N-Methyl-N-nitrosoharnstoff (MeNOUr), N-Äthyl-N-nitrosoharnstoff (EtNOUr), 7-Brommethyl-benz[a]anthracen, N-Acetoxy-2-acetylaminofluoren [(Ac)2ONFln] und K-Region Oxiden, gefolgt von Sedimentation in neutralen Sucrosegradienten, führte zu nur wenigen Brüchen. Nach Inkubation mit den indirekten Carcinogenen N-Hydroxy-2-acetylaminofluoren, 2-Acetylaminofluoren, 7-Methyl-und 7,12-Dimethyl-benz[a]anthracen wurden keine Brüche beobachtet. Wurde dagegen die Phagen-DNA mit den direkten Carcinogenen unter denselben Reaktionsbedingungen umgesetzt, jedoch anschließend mit Alkali denaturiert und in alkalischen Sucrosegradienten sedimentiert, so waren zahlreiche Einzelstrangbrüche nachweisbar. Die Inkubation der DNA mit indirekten Carcinogenen und die Analyse der Produkte in alkalischen Sucrosegradienten ergab, daß nur 7,12-Dimethylbenz[a]anthracen und, in geringem Umfang, 7-Methyl-benz[a]anthracen zu Brüchen führten. N-Methyl-N′-nitro-N-nitrosoguanidin bewirkte alkali-katalysierbare Brüche in superhelikaler Phagen-DNA; dieser Effekt war besonders ausgeprägt in Gegenwart von N-Acetyl-cystein. In weiteren Experimenten wurde PM2 DNA mit abgestuften Konzentrationen von [3H]MeNOUr, 7-Brom[14C]methyl-benz[a]anthracen und N-Acetoxy-2-[2-3H]acetylaminofluoren umgesetzt. Durch gleichzeitige Sedimentationsanalyse in neutraler und alkalischer Sucrose wurden die Anzahl der pro PM2 Duplex kovalent gebundenen Carcinogen-Reste sowie die Anzahl alkalikatalysierter Brüche bestimmt. Auf den gleichen Betrag gebundener Carcinogen-Reste bezogen, nimmt die Fähigkeit dieser Carcinogene, alkali-empfindliche Stellen in DNA einzuführen, in der Reihenfolge: 7-Brommethylbenz[a]anthracen〉MeNOUr〉(Ac)2ONFln ab. MeNOUr und EtNOUr bilden in DNA Alkyl-phosphotriester; weiterhin alkylieren sie unter anderem N-7 und O6 des Guanins sowie N-3 des Adenins. Diese Basenmodifikation führt zur Labilisierung der jeweiligen N-glykosidischen Bindung und zu Basenverlust (Apurinstelle). Sowohl Apurinstellen als auch Alkyl-phosphotriester sind alkali-empfindlich. Es ist wahrscheinlich, daß 7-Methyl-und 7,12-Dimethylbenz[a]anthracen (beide möglicherweise durch Luftsauerstoff aktiviert) sowie 7-Brommethyl-benz[a]anthracen, (Ac)2ONFln und die getesteten K-Region Oxide ihre Wirkung aufgrund derselben Mechanismen entfalten.
    Notes: Summary Supercoiled DNA duplexes of phages φX 174 and PM2 were treated in aqueous solution at neutral pH with ultimate and proximate carcinogens. Subsequently, the carcinogen-treated phage DNAs were subjected to velocity sedimentation in neutral and alkaline sucrose to quantitate introduction of single strand breaks. Reaction of phage DNA with the ultimate carcinogens N-methyl-N-nitrosourea (MeNOUr), N-ethyl-N-nitrosourea (EtNOUr), 7-bromomethyl-benz[a]-anthracene, N-acetoxy-2-acetylaminofluorene [(Ac)2ONFln] and K-region oxides for short periods followed by sedimentation in neutral sucrose gradients led to very few breaks. Incubation with the proximate carcinogens N-hydroxy-2-acetylaminofluorene, 2-acetylaminofluorene, 7-methyl-, and 7,12-dimethyl-benz[a]anthracene did not result in breaks. However, when the phage DNAs were reacted with the ultimate carcinogens under the same conditions but subsequently alkali-denatured and sedimented in alkaline sucrose gradients, single strand breaks were readily introduced. Incubation with the proximate carcinogens followed by alkali denaturation and sedimentation in alkaline sucrose showed that only 7,12-dimethylbenz[a]anthracene and, to a minor extent, 7-methyl-benz[a]anthracene caused alkali-inducible breaks. The ability of N-methyl-N′-nitro-N-nitrosoguanidine to effect breakdown of superhelical phage DNA in alkali was found enhanced in the presence of N-acetyl-cysteine.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of cancer research and clinical oncology 96 (1980), S. 243-257 
    ISSN: 1432-1335
    Keywords: Agarose-Gelelektrophorese ; Carcinogen-modifizierte superhelikale DNA ; Agarose gel electrophoresis ; Carcinogen-modified superhelical DNA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Description / Table of Contents: Summary Superhelical DNA of the Pseudomonas phage PM2 was irradiated with UV-light or reacted with covalently binding carcinogens, such as 7-bromomethyl-benz[a]anthracene, (Ac)2ONFln, K-region epoxides, and alkylating agents. Migration velocity of the DNA products was determined using agarose gel electrophoresis. In gels of more than 1.3%–1.9% agarose, modified PM2 DNA exhibited a dose-(concentration-)dependent decrease of migration velocity. This phenomenon is probably due to a decrease in superhelix density which caused the compact DNA coil to assume eventually an open-circular conformation. Comparison of the extent of DNA modification with the decrease of migration velocity revealed that the superhelical structure sensitively reflected the chemical DNA alterations. DNA species exhibiting, in 1.6% agarose gels, a migration velocity of up to 30% of that of control DNA showed an increase of velocity in 0.4% agarose. Therefore, in 1.3%–1.9% agarose gels, the decrease of superhelix density is accompanied by an increase of the frictional coefficient, whereas in 0.4%–0.9% agarose gels the same decrease of superhelix density apparently led to a higher degree of flexibility of the macromolecule and/or exposure of additional electric charges.
    Notes: Zusammenfassung Die superhelikale DNA des Pseudomonas Phagen PM2 wurde mit Ultraviolettlicht bestrahlt oder mit kovalent bindenden Carcinogenen wie 7-Brommethyl-benz[a]anthrazen, (Ac)2 ONFln, K-Region Expoxiden und Alkylantien umgesetzt. Mittels Gelelektrophorese wurde die Wanderungsgeschwindigkeit der DNA-Produkte bestimmt. In Trenngelen mit einem Agarosegehalt von 1,3–1,9% nahm die Wanderungsgeschwindigkeit der DNA mit steigender Modifikationsdichte (steigenden Carcinogen-Konzentrationen bzw. UV-Dosen) ab. Dieses Phänomen ist wahrscheinlich darauf zurückführen, daß die DNA-Modifikation eine Abnahme der Superhelix-Dichte bewirkte, im Zuge derer das ursprünglich kompakte, geknäuelte DNA-Molekül schließlich eine offen-zirkuläre Konformation annahm. Ein Vergleich der DNA-Modifikationsdichte mit der damit verbundenen Abnahme der Wanderungsgeschwindigkeit machte deutlich, daß der Grad der Superhelizität sehr empfindlich mit den chemischen DNA-Veränderungen variierte. DNA-Proben, die in 1.6%igen Agarosegelen eine Wanderungsverzögerung bis zu 70% der Kontroll-DNA zeigten, liefen in 0.4%igen Trenngelen merkwürdigerweise schneller als die Kontrollen. Somit ist in Trenngelen von einem 1,3–1,9igen Agarosegehalt die Abnahme der Superhelix-Dichte von einer Zunahme des Reibungskoeffizienten begleitet; dagegen scheint in 0,4–0,9%igen Agarosegelen dieselbe Abnahme der Superhelix-Dichte zu einer höheren Flexibilität des Makromoleküls und/oder der Freisetzung zusätzlicher elektrischer Ladungen zu führen.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of cancer research and clinical oncology 92 (1978), S. 177-214 
    ISSN: 1432-1335
    Keywords: Carcinogens ; Mutagens ; Antitumor Agents ; DNA Repair ; Carcinogene ; Mutagene ; antineoplastische Substanzen ; DNA Reparatur
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Description / Table of Contents: Zusammenfassung Äther-permeabilisierte (nukleotid-permeable) Escherichia coli-Zellen sprechen auf alkylierende und arylalkylierende Carcinogene mit DNA Exzisionsreparatur an. Der Grad der Stimulation der DNA-Reparatursynthese kann quantitativ erfaßt werden. In der vorliegenden Arbeit wurde untersucht, ob die Äther-behandelte E. coli-Zelle ein allgemein anwendbares Reparaturindikator-System darstellt, das die Bindung von Carcinogenen, Mutagenen und antineoplastischen Substanzen an DNA anzeigt. Aus diesem Grund wurde ein Standardtest entwickelt, mit dem wir 11 direkte Carcinogene, 10 indirekte Carcinogene, 2 Tumorpromotoren, 6 Mutagene und 12 antineoplastische Verbindungen vergleichend prüften. Gemessen an der Stimulation der DNA Reparatur, verursachten alle direkt an DNA wirkenden Carcinogene (alkylierende, acylierende, arylalkylierende Verbindungen) und Mutagene (z. B. Wasserstoffperoxid, Acridin-Derivate) DNA Exzisionsreparatur in Wildtypzellen und hemmten gleichzeitig, in unterschiedlichem Maße, die replikative DNA Synthese. In Vergleichsexperimenten mit den Defektmutanten uvrA und uvrB wurde geprüft, ob die Pyrimidin-Dimeren-spezifische UV-Endonuklease an der Entfernung der DNA Schäden beteiligt war. Dies war bei einer Reihe von direkt wirkenden Carcinogenen [(Ac)2ONFln, Mitomycin C, sowie sehr reaktiven alkylierenden Carcinogenen] der Fall. Keines der direkt wirkenden Carcinogene stimulierte Reparaturpolymerisation in einer Defektmutante, der die 5′-3′ exonukleolytische Aktivität der DNA Polymerase I fehlte. Indirekt wirkende Carcinogene (wie Me2NNO, 4-Nitrochinolin-1-oxid, Aflatoxine) riefen im Standardtest keine Exzisionsreparatur hervor; der wahrscheinliche Grund ist, daß E. coli die für kovalente DNA-Bindung erforderlichen Aktivierungsschritte nicht ausführen kann. Wurde jedoch Me NNO mit Udenfriend's Hydroxylierungsreagenz vorbehandelt, so löste es in Äther-permeabilisierten Zellen ein geringes Maß an Reparaturpolymerisation aus. Interkalierende Mutagene (wie Atebrin, Äthidiumbromid) hemmten zwar die replikative DNA Synthese; sie stimulierten jedoch nicht die Exzisionsreparatur. Die Tumor promotoren TPA und Phorbol-12,13-didekanoat zeigten selbst bei hohen Konzentrationen keine reparaturinduzierende Wirkung. Ebensowenig vermochten diese Verbindungen die durch MeNOUr oder (Ac)2ONFln ausgelöste Reparatursynthese zu hemmen. Die untersuchten antineoplastischen Verbindungen lassen sich nach ihrem Einfluß auf die DNA Synthese in zwei Gruppen einteilen: Die eine Gruppe umfaßt Verbindungen wie BCNU und Bleomycin, die die Reparaturpolymerisation stimulieren und-zusätzlich — die DNA Replikation hemmen. Von den Substanzen dieser Gruppe ist bekannt, daß sie kovalent an DNA binden. Die zweite Gruppe umfaßt Verbindungen wie Adriamycin und die cis-Pt(II)diamminkomplexe, die die DNA Replikation hemmen, ohne die Reparatursynthese zu stimulieren. Von diesen Substanzen ist bekannt, daß ihre DNA-Wechselwirkungen überwiegend nicht-kovalenter (d.h. interkalierender, elektrostatischer) Natur sind. Unsere Experimente zeigen, daß die Äther-permeabilisierte E. coli-Zelle mit Erfolg eingesetzt werden kann, um direkt auf DNA wirkende Carcinogene, Mutagene und antineoplastische Substanzen bezüglich ihrer reparaturinduzierenden und replikationshemmenden Eigenschaften zu prüfen. Der Standardtest läßt sich auch auf indirekt Carcinogene ausdehnen, vorausgesetzt, daß eine ausreichende Aktivierung erzielt werden kann.
    Notes: Summary Ether-permeabilized (nucleotide-permeable) Escherichia coli cells respond to alkylating and arylalkylating carcinogens with DNA excision repair, as assessed by their stimulation of DNA repair synthesis. In the present work, we have investigated whether DNA repair synthesis in ether-treated E. coli cells can serve as a general indicator to monitor the DNA-binding of carcinogens, mutagens and antitumor agents. Therefore, a standard assay was developed and comparative analyses were performed on 11 ultimate carcinogens, 10 proximate carcinogens, 2 tumor promoters, 6 mutagens, and 12 antitumor agents. All ultimate carcinogens (alkylating, acylating, arylalkylating agents) and mutagens (e.g., hydrogen peroxide, acridine derivatives) caused DNA excision repair in wild type cells as measured by [3H] dTMP incorporation and simultaneously inhibited replicative DNA synthesis to various extents. Control experiments with the mutant cells uvrA and uvrB were performed to determine whether the pyrimidine-dimer-specific UV-endonuclease was involved in the removal of DNA damage. This was found to be true for the ultimate carcinogens (Ac)2ONFln, mitomycin C, and for very reactive alkylating carcinogens. None of the ultimate carcinogens induced repair polymerization in mutant cells lacking the 5′-3′ exonucleolytic activity of DNA polymerase I. Proximate carcinogens, such as Me2NNO, 4-nitroquinoline-1-oxide and aflatoxins, did not induce excision repair in the standard assay, probably because of the inability of E. coli to perform the activation steps necessary for covalent DNA-binding. However, Me2NNO, when pretreated with Udenfriend's hydroxylating mixture, gave rise to a low level of repair polymerization in ethertreated cells. Intercalating mutagens, such as quinacrine and ethidum bromide, inhibited replicative DNA synthesis. However, they were not found to be repair-inducers. The tumor promoters TPA and phorbol-12,13-didecanoate did not cause excision repair, even when applied at high concentrations, nor did they inhibit repair synthesis stimulated by MeNOUr or (Ac)2ONFln. The antitumor agents may be classified into two groups on the basis of the influence they exert on DNA synthesis: members of the first group (involving BCNU and bleomycin) stimulate repair polymerization and, in addition, inhibit DNA replication. These compounds are known to bind covalently to DNA. The second group of drugs (including adriamycin and cis-Pt(II)diammine complexes) inhibits DNA replication without stimulating repair synthesis. The predominant DNA-interaction of these compounds is known to be a non-covalent (i.e., intercalative, electrostatic) binding. Our experiments show that the ether-permeabilized E. coli cell can be successfully used to test ultimate carcinogens, mutagens and antitumor agents for repair-inducing and replication-inhibiting activity. The standard test might be extended to pre- and proximate carcinogens, provided these can be suitably activated.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Journal of cancer research and clinical oncology 92 (1978), S. 157-176 
    ISSN: 1432-1335
    Keywords: Carcinogenic Epoxides and DNA Repair ; Carcinogene Epoxide und DNA Reparatur
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Description / Table of Contents: Zusammenfassung Äther-permeabilisierte (nukleotid-permeable) Escherichia coli Zellen zeigten DNA Exzisionsreparatur nach Inkubation mit den folgenden K-Region Epoxiden: 7-Methyl- und 7,12-Dimethyl-benz[a]anthracen-5,6-oxid, Chrysen-5,6-oxid und Benz[a]pyren-4,5-oxid. Diese DNA Exzisionsreparatur trat bei uvrA und uvrB Mutanten nicht auf. Das K-Region Epoxid Phenanthren-9,10-oxid war bei allen geprüften E.coli Stämmen wirkungslos. Im Gegensatz zu den bei Wildtypzellen aktiven K-Region Epoxiden, riefen 1,2,3,4-Diepoxybutan und die Epoxide des Tumor Promoters TPA (12-O-Tetradecanoyl-phorbol-13-acetat) auch bei uvrA und uvrB Mutanten DNA Reparatur hervor. Die Enzymaktivitäten, die einzelne Reparaturschritte katalysierten, wurden über a) die Reparaturpolymerisation und b) die Größenabnahme denaturierter DNA gemssen. a) Die Epoxid-induzierte Reparaturpolymerisation erwies sich als leicht erfaß-barer und quantifizierbarer Reparatureffekt. Keines der geprüften K-Region Epoxide stimulierte DNA Reparatursynthese in uvrA oder uvrB Mutanten; dies weist darauf hin, daß die uvrA-, und uvrB- kontrollierte UV-Endonuklease die Exzisionsreparatur einleitet, indem sie die Epoxid-modifizierte DNA spaltet. 1,2,3,4-Diepoxybutan und die TPA-6,7-oxide induzierten DNA Reparatur in Defektmutanten, die nicht in der Lage sind, UV-Schäden zu beseitigen, wenngleich der Grad der Induktion geringer war als in Wildtypzellen. Dies zeigt, daß uvr-unabhängige Inzisionsschritte an der Reparatur beteiligt sind. Keines der Epoxide rief Reparaturpolymerisation in einer Defektmutante (polA 107) hervor, die durch einen Funktionsausfall der 5′-3′ exonukleolytischen Aktivität der DNA Polymerase I gekennzeichnet ist. Dies macht deutlich, daß die Exonuklease VI bei der Ausschneidung Epoxid-geschädigter Nukleotide eine zentrale Rolle spielt. Die nur geringe Reparaturpolymerisation in polA 1 Zellen zeigt, daß DNA Polymerase I das wichtigste polymerisierende Enzym darstellt. b) Als Folge der Behandlung mit 7-Methyl-benz[a]anthracen-5,6-oxid erfuhr die DNA von Wildtypzellen, im Gegensatz zu uvrA-Mutanten, nach Denaturierung und Sedimentation in alkalischen Sucrosegradienten eine Größenabnahme; dies ist ein Hinweis darauf, daß reparaturspezifische endonukleolytische Spaltung stattfand. Für die Inzision war ATP erforderlich. Offensichtlich kann die UV-Endonuklease die DNA Reparatur nur einleiten, wenn sie über ATP als Cofaktor verfügt.
    Notes: Summary Ether-permeabilized (nucleotide-permeable) Escherichia coli cells exhibited DNA excision repair when exposed to the following carcinognic K-region epoxides: 7-methyl- and 7,12-dimethyl-benz[a]anthracene-5,6-oxide, chrysene-5,6-oxide and benzo[a]pyrene-4,5-oxide. This DNA excision repair was missing in uvrA and uvrB mutant cells. The K-region epoxide phenanthrene-9,10-oxide was ineffective in all E.coli strains tested. In contrast to the K-region epoxides which where found active only in wild type cells, 1,2,3,4-diepoxybutane and the 6,7-epoxides of the tumor promoter TPA (12-O-tetradecanoyl-phorbol-13-acetate) elicited DNA repair in uvr A, uvrB mutant cells as well. Enzymic activities catalyzing particular repair steps were identified by determining a) repair polymerization and b) size reduction of denatured DNA. a) An easily quantifiable effect in E.coli wild type cells was epoxide-induced repair polymerization. None of the K-region epoxides tested stimulated DNA repair synthesis in uvrA, uvrB mutant cells, indicating that the uvrA-, uvrB- controlled UV-endonuclease initiated excision repair by cleaving epoxide-damaged DNA. 1,2,3,4-Diepoxybutane and the TPA-6,7-oxides induced DNA repair polymerization in uvr-deficient cells, although to a lesser extent than in wild type cells, suggesting the involvement of uvr-independent incision steps. None of the epoxides induced repair polymerization in a mutant (polA 107) lacking the 5′-3′ exonucleolytic activity of DNA polymerase I (exonuclease VI). The absence of any repair polymerization in the polA 107 mutant indicates that the exonuclease VI plays a central role in removing epoxide-damaged nucleotides. As evidenced by greatly reduced levels of repair polymerization measured in polA 1 cells, DNA polymerase I was the main polymerizing enzyme. b) As a consequence of treatment with 7-methyl-benz[a]anthracene-5,6-oxide, DNA from wild type cells, contrary to uvrA mutant cells, showed size reduction after denaturation and sedimentation in alkaline sucrose gradients. This is explained by repair-specific endonucleolytic cleavage of damaged DNA. The incision required the presence of ATP indicating that functional UV-endonuclease needs ATP as a cofactor.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-0738
    Keywords: Xeroderma pigmentosum fibroblasts ; Colony-forming ability ; Methyl methanesulfonate ; DNA repair ; Apurinic acid endonuclease ; 3-methyl-adenine-DNA glycosylase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Several normal and XP group A fibroblast cell lines were exposed to the weakly carcinogenic and toxic agent methyl methanesulfonate, and the differences in their abilities to form colonies were determined. The XP group A cell lines investigated exhibited higher sensitivity towards methyl methanesulfonate than normal cell lines. Correspondingly, cell-free extracts of the same XP cell lines differed from normal ones in cleaving methyl methane-sulfonate-treated doublestranded DNA less rapidly. Since depurinated DNA was cleaved by XP and normal cell lines at equal rates, it was concluded that the differences observed with methylated DNA were due to a reaction preceding cleavage at apurinic sites. In control experiments using extracts from Chinese hamster ovary cells liberation of m3Ade was observed indicating the presence of 3-methyl-adenine DNA glycosylase activity. Furthermore, extracts from a normal fibroblast line liberated small amounts of m3Ade, whereas the one of a XP group A cell line was found to be less effective. The possible role of 3-methyl-adenine DNA glycosylase activity as a rate-limiting factor in the incision step has been discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Journal of cancer research and clinical oncology 123 (1997), S. 659-668 
    ISSN: 1432-1335
    Keywords: Key words Mutator hypothesis ; Mutant DNA ; polymerase ; O6-methylguanine ; Mismatch extension ; Translesional DNA synthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  To investigate whether or not DNA polymerases α, δ, and ε from tumor cells have acquired properties that might be responsible for mutations found in tumor development, we investigated copying fidelities of DNA polymerases α, δ, and ε from the highly malignant Novikoff hepatoma cells and compared them to the corresponding enzymes from normal rat liver. DNA polymerases were purified more than 300-fold by three chromatographic steps. Copying fidelity was studied using steady-state kinetics and an 18-mer oligonucleotide primed with a 12-mer (13-mer for extension experiments) as DNA primer-template. Three experimental approaches were chosen: i) extension of DNA primers with mismatched 3’-OH ends opposite dGMP, ii) DNA insertion of nucleotides opposite m6G in the template and iii) extension of DNA primers with mismatched 3’-OH ends opposite m6G. i) Extension of DNA primers with mismatched 3’-OH ends opposite dGMP. DNA primer templates containing G:T and G:A mispairs at the 3’-OH position of the primer were easily extended by DNA polymerases α, δ and ε from both normal rat liver and Novikoff hepatoma cells. The G:G mismatch was elongated with low efficiency. Notably, DNA polymerase α from Novikoff hepatoma cells extended G:A and G:G mismatches significantly faster than the enzyme from normal cells. ii) Insertion of nucleotides opposite m 6 G. DNA polymerases α, δ, and ε from normal rat liver preferably catalyzed incorporation of dAMP opposite m6G at dNTP concentrations 〈100 μM. When dNTP concentrations were raised to ≥100 μM, dCMP (DNA polymerases δ and ε) and dTMP (DNA polymerase α) were also incorporated. The same insertion characteristics were found for the enzymes from Novikoff cells, however, insertion efficiencies of dAMP and dCMP were significantly higher for polymerases δ and ε. iii) Extension of primers with mismatched 3’-OH ends opposite m 6 G. Only m6G:dAMP and m6G:dCMP mismatches were extended by DNA polymerases α, δ and ε from both sources. No differences in extension efficiency were observed between the enzymes from normal and hepatoma cells. Taken together, our results suggest that DNA polymerases α, δ, and ε from Novikoff cells catalyzed incorporation of the wrong nucleotides more readily and extended mismatches more easily. These results may provide a rationale why numerous mutations accumulate during tumor development.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-1335
    Keywords: Key words Chemical carcinogens ; List of MAK and BAT values ; Cancer risk ; carcinogen classification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Carcinogenic chemicals in the work area were previously classified into three categories in section III of the German List of MAK and BAT values (the list of values on maximum workplace concentrations and bio‐logical tolerance for occupational exposures). This classification was based on qualitative criteria and reflected essentially the weight of evidence available for judging the carcinogenic potential of the chemicals. In the new classification scheme the former sections IIIA1, IIIA2, and IIIB are retained as categories 1, 2, and 3, to correspond with European Union regulations. On the basis of our advancing knowledge of reaction mechanisms and the potency of carcinogens, these three categories are supplemented with two additional categories. The essential feature of substances classified in the new categories is that exposure to these chemicals does not contribute significantly to the risk of cancer to man, provided that an appropriate exposure limit (MAK value) is observed. Chemicals known to act typically by non-genotoxic mechanisms, and for which information is available that allows evaluation of the effects of low-dose exposures, are classified in category 4. Genotoxic chemicals for which low carcinogenic potency can be expected on the basis of dose/response relationships and toxicokinetics and for which risk at low doses can be assessed are classified in category 5. The basis for a better differentiation of carcinogens is discussed, the new categories are defined, and possible criteria for classification are described. Examples for category 4 (1,4-dioxane) and category 5 (styrene) are presented.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-069X
    Keywords: Key words Basal cell nevus syndrome ; Dysplastic ; nevus syndrome ; Differential hybridization ; Predisposition to skin cancer ; Tumor suppressor genes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...