Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    ISSN: 1432-1106
    Schlagwort(e): Head posture ; Interstitial nucleus of Cajal ; Neck EMG ; Vestibular system ; Pontine reticular formation ; HRP
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary (1) Experiments were performed in cats to examine effects of lesion of the interstitial nucleus of Cajal (INC) on head posture and the responsible pathway. Unilateral INC lesions resulted in lateral tilt of the head to the opposite side, and bilateral INC lesions resulted in dorsiflexion of the head as reported earlier. Such characteristic head posture was produced by successful kainic acid injections as well as by electrolytic lesions, suggesting that it was not due to damage of nerve fibers passing through the INC, but was produced most probably by damage of nerve cells in the INC. Electromyographic (EMG) recordings in unilateral INC-lesioned cats showed that activity was higher in the ipsilateral than in the contralateral major dorsal neck muscles (biventer, splenius, complexus, and rectus), and also higher in the contralateral than in the ipsilateral obliquus capitis caudalis muscle. The pattern of EMG activity was basically similar either when the cats presented typical head tilt or when their head was fixed to the frame at the stereotaxic plane. Characteristic head posture resulting from INC lesions seems consistent with the head posture produced by activation of these muscles. (2) Interruption of the medial and lateral vestibulospinal tracts did not significantly influence head tilt that had been produced by INC lesions. Characteristic head tilt was produced by INC lesions after cats had received bilateral labyrinthectomies, bilateral lesions of most of the vestibular nuclei, and bilateral aspiration of the cerebellar vermis and most of the lateral vestibular nuclei, indicating that typical head tilt can be produced without the vestibular nuclei and cerebellar vermis. (3) The medial longitudinal fasciculus (MLF) was interrupted at different levels to cut the major descending fibers from the INC. MLF interruption at the caudal midbrain produced typical head tilt, although MLF cut at the caudal pons and medulla was ineffective. Bilateral parasagittal cuts lateral to the MLF in the pons produced severe dorsiflexion of the head, and a subsequent unilateral INC lesion produced no further head tilt. These results suggest that fibers originating in the INC, removal of which is responsible for the typical head tilt, run through the MLF in the midbrain, and leave it in the pontine level. (4) After injections of HRP into the INC and closely surrounding reticular formation, anterogradely labeled fibers were seen in the ipsilateral rostral pontine MLF, and many of them entered the pontine reticular formation which corresponds to the caudal part of the nucleus reticularis (n.r.) pontis oralis and the rostral part of the n.r. pontis caudalis. In electrophysiological experiments, many neurons were antidromically activated in the INC region by weak stimuli confined to the ipsilateral rostral pontine reticular formation. Many cells were found within the INC and surrounding reticular formation. These results suggest that interruption of the INC projection to the rostral pontine reticular formation may be responsible for the characteristic head tilt produced by INC lesions.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Experimental brain research 85 (1991), S. 36-44 
    ISSN: 1432-1106
    Schlagwort(e): Vertical linear acceleration ; Linear vestibulo-ocular reflex ; Temporal conversion ; Optokinetic eye movement ; Labyrinthectomy ; Otolith-visual interaction ; Cat
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary 1. Eye movement responses were examined in alert cats during sinusoidal vertical linear acceleration. Stimulus frequencies of 0.20–0.85 Hz with a constant amplitude of 10.5 cm (corresponding to 0.02–0.31 g) were used. A random visual pattern was presented to give sinusoidal vertical optokinetic stimuli of similar amplitude and frequency to the up-down motion of the cat. 2. Sinusoidal linear acceleration in the presence of a stationary visual pattern produced robust eye movement responses with near compensatory phase at all stimulus frequencies tested. With both eyes covered, a vertical linear vestibulo-ocular reflex (LVOR) was frequently produced at a stimulus strength corresponding to 0.04–0.31 g. The evoked LVOR was always small, and the overall mean response phase values advanced by as much as 70 ° at frequencies below 0.56 Hz, indicating that the otolith signals activated by sinusoidal linear acceleration were not, by themselves, converted into compensatory eye position signals under these experimental conditions. 3. Optokinetic stimulation alone produced more lag of response phase as stimulus frequency increased, and the gain of evoked eye movement responses was smaller at higher stimulus frequencies compared to the gain during linear acceleration in the light. Bilateral labyrinthectomies resulted in a significant change of the eye movement responses during linear acceleration when visual inputs were allowed: there was more phase lag at higher stimulus frequencies and a decreased gain at all frequencies tested. These results indicate that the interaction of otolith and visual inputs produces robust eye movement responses with near compensatory phase during sinusoidal linear acceleration in the light.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    ISSN: 1432-1106
    Schlagwort(e): Interstitial nucleus of Cajal ; Burst-tonic neuron ; Vertical eye movement ; Vertical semicircular canal ; Electrical stimulation ; Latency ; Cat
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary Recent studies have shown that the interstitial nucleus of Cajal (INC) in the midbrain reticular formation is involved in the conversion of vertical semicircular canal signals into eye position during vertical vestibuloocular reflexes. Secondary vestibulo-ocular relay neurons related to the vertical canals, which constitute the majority of output neurons sending signals from the vestibular nuclei directly to the oculomotor nuclei, have been shown to project axon collaterals to the region within and near the INC. To understand how the INC is involved in the signal conversion, latencies of response of neurons in the INC region to electrical stimulaton of the vestibular nerve were examined in alert cats. The responses of 96 cells whose activity was clearly modulated by sinusoidal pitch rotation (at 0.31 Hz) were analyzed. These included 41 cells whose activity was closely correlated with vertical eye movement (38 burst-tonic and 3 tonic neurons), and 55 other cells (called pitch cells as previously). Twenty nine of the 96 cells (30%) were activated at disynaptic latencies following single shock stimulation of the contralateral vestibular nerve. Disynaptically activated cells were significantly more frequent for pitch cells than for eye movement-related cells (25/55 = 45% vs 4/41 = 10%; p 〈 0.001, Chi-square test). Conversely, cells that did not receive short-latency activation (〈 6 ms) were more frequent among eye movement-related cells than pitch cells (26/41 = 63% vs 13/55 = 24%; p 〈 0.001, Chi-square test). Pitch cells showed significantly less phase lag (re head acceleration) than eye movement-related cells during sinusoidal pitch rotation (mean ± SD 124° ± 17° vs 138° ± 14°. p 〈 0.01, t-test). These results suggest that 1) cells in the INC region other than burst-tonic and tonic neurons mainly receive direct inputs from secondary vestibulo-ocular relay neurons, and that 2) vertical canal signals reach eye movement-related neurons mainly polysynaptically.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    ISSN: 1432-1106
    Schlagwort(e): Vestibulo-ocular reflex ; Vertical semicircular canals ; Spatial transformation ; Null point analysis ; Interstitial nucleus of Cajal ; Burst-tonic neuron ; Cat
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary 1. Maximal activation directions of vertical burst-tonic and tonic neurons in the region of the interstitial nucleus of Cajal (INC) were examined in alert cats during vertical vestibulo-ocular reflex induced by sinusoidal rotation (at 0.11 Hz±10 deg, or 0.31 Hz±5 deg) in a variety of vertical planes using a null point analysis. The results were compared with the angles of anatomical and functional planes of vertical canals reported by Blanks et al. (1972) and Robinson (1982), and with the angles of vertical eye muscles measured in this study and by Ezure and Graf (1984). 2. Maximal activation directions of 23 cells (21 burst-tonic and 2 tonic neurons) were determined from their responses during rotation in 4 or more different vertical planes. All cells showed sinusoidal gain curves and virtually constant phase values except near the null regions, suggesting that their responses were evoked primarily by canal inputs. Phase values of 5 cells near the null regions depended on the rotation plane, suggesting additional otolith inputs. We used a measurement error range of ±10 deg for calculating the maximal activation directions from the null regions of individual cells and the values of error ranges of null calculation. Of the 23, the maximal activation directions of 7 cells were outside the measurement error ranges of vertical eye muscle angles and within the ranges of vertical canal angles (class A), those of 5 cells were within the ranges of eye muscle angles and outside the ranges of vertical canal angles (class B), and those of the remaining 11 cells were in the overlapping ranges for both angles (class C). Even if only the cells in which 5 or more measurement points were taken to determine maximal activation directions (n = 15), the results were similar. During vertical rotation with the head orientation +60 deg off the pitch plane, dissociation of cell activity and vertical compensatory eye movement was observed in 5 cells in class A or C that had null angles near +45 deg. These results suggest that the cells in class A and B carried individual vertical canal and oculomotor signals, respectively, although it is difficult to tell for the majority of cells (class C) which signals they reflected. Some cells in class A and C were antidromically activated from the medial longitudinal fasciculus at the level of abducens nucleus, suggesting that the signals carried by these cells may be sent to the lower brainstem. 3. Most burst-tonic neurons did not respond to horizontal rotation; significant responses were obtained in only 3 of 10 cells tested for which the gain was only 14–17% of their maximal vertical gain. There was no clear difference in gain or phase values of the responses to vertical rotation, or in eye position sensitivity (during spontaneous saccades) between cells whose responses coincided with individual vertical canal angles and those matching the angles of vertical recti muscles. The values of phase lag (re head acceleration during pitch rotation) and eye position sensitivity of these cells are still smaller compared to those of extraocular motoneurons reported by Delgado-Garcia et al. (1986), although they were larger than those of secondary vestibulo-ocular neurons (Perlmutter et al. 1988). All these results suggest that the signals carried by burst-tonic and tonic neurons in the INC region are different from oculomotor signals. 4. Similar analysis was done for comparison for 19 other cells that did not show close correlation with spontaneous eye movement but whose activity was clearly modulated by pitch rotation (pitch cells). More than a half (10/19) had maximal activation directions outside the measurement error ranges of individual vertical canal angles, and many shifted towards roll. Horizontal rotation produced responses with higher gain than burst-tonic neurons, suggesting a difference in the spatial response properties of burst-tonic and tonic neurons on one hand and pitch cells on the other.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    ISSN: 1432-1106
    Schlagwort(e): Vertical eye movement ; Burst-tonic neuron ; Tonic neuron ; Interstitial nucleus of Cajal ; Saccade ; Vestibulo-ocular reflex ; Temporal conversion ; Cat
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary (1) Discharge characteristics of neurons in the region of the interstitial nucleus of Cajal (INC) were studied in alert cats during spontaneous or visually induced eye movement and sinusoidal vertical (pitch) rotation. Activity of a majority of cells (n = 68) was closely related to vertical eye position with or without bursting activity during on-direction saccades. They were called vertical burst-tonic (n = 62) and tonic (n = 6) neurons. Mean discharge rates for individual cells when the eye was near the primary position ranged from 35 to 133 (mean 75) spikes/s with a coefficient of variation (CV) ranging from 0.04 to 0.29 (mean 0.15). Average rate position curves were linear for the great majority of these cells with a mean slope of 3.9 ± 1.2 SD spikes/s/deg. (2) The burst index was defined as the difference in discharge rate between maximal rate during an on-direction saccade and the tonic rate after the saccade. The values of mean burst index for individual cells ranged from 8 to 352 (mean 135) spikes/s. Tonic neurons had a burst index lower than 60 spikes/s and were distributed in the lower end of the continuous histogram, suggesting that burst-tonic and tonic neurons may be a continuous group with varying degrees of burst components. During off-direction saccades, a pause was not always observed, although discharge rate consistently decreased and pauses were seen when saccades were made further in the off-direction toward recruitment thresholds. Significant positive correlation was observed between average discharge rate during off- as well as on-direction saccades and tonic discharge rate after saccades for individual cells, which was not due to cats making saccades mainly from the primary position. (3) During pitch rotation at 0.11 Hz (±10 deg), burst-tonic and tonic neurons had mean phase lag and gain of 128 (±13 SD) deg and 4.2 (±1.7 SD) spikes/s/deg/s2 relative to head acceleration. During pitch rotation of a wide frequency range (0.044–0.495 Hz), the values of phase lag were mostly constant (120–140 deg), while simultaneously recorded vertical VOR showed the mean phase lag of 178 deg. Vertical eye position sensitivity and pitch gain (re head position) showed significant positive correlation. (4) Comparison of the discharge characteristics of vertical burst-tonic and tonic neurons with those of secondary vestibulo-ocular neurons (Perlmutter et al. 1988) and extraocular motoneurons (Delgado-Garcia et al. 1986) in alert cats suggests that signals carried by burst-tonic and tonic neurons are partially processed signals in vertical VOR and saccades, and different from oculomotor signals. (5) The INC region also contained many cells that did not belong to the above groups but whose activity was clearly modulated by pitch rotation (called pitch cells for the present study, n = 44). Many (n = 23) showed some correlation with vestibular quick phases, and some (n = 12) with visually elicited eye movement, although they showed significantly lower and more irregular discharge rates than burst-tonic and tonic neurons (mean discharge rate when the eye was near the primary position 34, range 3–91, spikes/s; mean CV 0.61, range 0.15–1.7). During pitch rotation they showed the mean phase lag and gain of 119(±26 SD) deg and 3.2(±2.1 SD) spikes/s/deg/s2. Some cells showed a much lower phase lag of about 90 deg. (6) More than half the burst-tonic, tonic and pitch cells tested were antidromically activated by stimuli applied to the ponto-medullary medial longitudinal fasciculus at the level of abducens nucleus, while none of them were activated from the inferior olive, suggesting that vertical eye position signals carried by some burst-tonic and tonic neurons are carried to the lower brainstem.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    ISSN: 1432-1106
    Schlagwort(e): Vertical linear acceleration ; Interstitial nucleus of Cajal ; Burst-tonic neuron ; Linear vestibuloocular reflex ; Temporal conversion ; Optokinetic eye movement ; Cat
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary 1. A total of 43 neurons that showed a close correlation with vertical eye movement with a burst-tonic or tonic type response during spontaneous saccades, were recorded within, and in the close vicinity of, the interstitial nucleus of Cajal (INC) in alert cats. Neuronal responses to sinusoidal vertical linear acceleration (0.2–0.85 Hz, amplitude 10.5 cm) and optokinetic stimuli (0.1–1.0 Hz, amplitude 10.5 cm), were examined. 2. All 43 eye movement-related neurons responded to sinusoidal vertical linear acceleration in the presence of a stationary visual pattern in correlation to robust eye movement responses with compensatory phase. Phase and gain values (re stimulus position) of response of individual cells were independent of the stimulus frequencies tested. Of these, 33 cells were examined during linear acceleration without visual input. Most cells (27/33) did not respond even when a weak linear vestibulo-ocular reflex was present (6/27). The remaining 6 cells (6/33) responded to linear acceleration. Their mean phase values advanced by 80 ° and gain dropped by 55% compared to the responses with visual inputs. 3. Twenty eight of the 43 cells were examined during vertical optokinetic stimuli. The activity of all 28 cells was modulated in correlation to eye movement responses. Response phase showed more lag, and gain decreased as stimulus frequencies increased, similar to optokinetic eye movement responses. 4. The close correlation between the activity of eye movement-related neurons in the INC region and robust eye movements during linear acceleration with visual inputs and optokinetic stimuli suggest that these neurons are involved in some aspect of vertical eye position generation during such stimuli.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Digitale Medien
    Digitale Medien
    Springer
    Experimental brain research 57 (1985), S. 264-270 
    ISSN: 1432-1106
    Schlagwort(e): Interstitial nucleus of Cajal ; Head posture ; Interstitial vestibular interaction ; Vestibular compensation
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary 1. Experiments were performed in cats to determine whether the head tilt following a unilateral lesion of the interstitial nucleus of Cajal (INC) can be attributed to removal of interstitiospihal fibers which have direct excitatory synaptic connections with ipsilateral neck extensor (biventer cervicis-complexus) and flexor (sternocleidomastoid, SCM) motoneurons. Unilateral INC lesions were made either electrolytically or reversibly by procaine infusion into the INC, and electromyographic activity was recorded bilaterally from biventer (BIV), splenius (SP) and SCM muscles. In both groups of lesions, activity of the ipsilateral SP and BIV was higher than that of the contralateral ones. When procaine was infused into the INC of awake cats, an increase of activity of the ipsilateral SP began before the cats presented the typical head tilt to the opposite side. Bilateral INC lesions caused dorsiflexion of the head. These results indicate that the head tilt resulting from unilateral INC lesions can not be explained by simple removal of the ipsilateral, direct excitatory interstitioneck impulses. 2. When unilateral INC lesions were combined with hemilabyrinthectomies, cats that were given labyrinthectomies on the side opposite to the previous INC lesions showed very severe head tilt, whereas cats that received labyrinthectomies on the same side did not show obvious head tilt. Furthermore, it took a much longer time for the cats of the former group to compensate the head tilt than it took those that had single lesions of the INC or labyrinth. These results suggest that the INC and labyrinth interact in the control of head posture and that the INC also plays a role in vestibular compensation. However, when bilatral INC lesions were combined with hemilabyrinthectomies, cats that had previously received bilateral INC lesions and which had fully compensated the head posture recuperated from vestibular symptoms following hemilabyrinthectomy within one to two weeks. Moreover, bilateral INC lesions that were performed in cats which had previously been given hemilabyrinthectomies and in which vestibular symptoms were well compensated did not produce any recurrence of vestibular symptoms. These results indicate that although the INC plays a role in the control of head posture following hemilabyrinthectomy, it is not needed for coarse vestibular compensation.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Digitale Medien
    Digitale Medien
    Springer
    Experimental brain research 20 (1974), S. 135-143 
    ISSN: 1432-1106
    Schlagwort(e): Cat ; Renshaw cell ; Antidromic activation ; Differential blocking
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary Attempts were made to study differences in the relative effectiveness of different size ranges of motor axons to Renshaw cells by differential blocking of larger fibers of the gastrocnemius nerve in cats anesthetized with Nembutal. 1. Differential blocking of larger fibers in the nerve was successfully obtained by applying trapezoid wave current to the nerve. 2. It was shown that more than half (58.1%) of the Renshaw cells receive homogeneous inputs from a motor axon collaterals, 25.8% of the cell receive collateral inputs from a certain group of fibers, and 12.5% of the Renshaw cells were activated by “γ range” fibers.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...