Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (6)
  • Plasticity  (4)
  • Field potentials  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 26 (1976), S. 171-184 
    ISSN: 1432-1106
    Keywords: Cat striate cortex ; Spatial interactions ; Selective visual experience ; Plasticity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The receptive fields of striate cortex neurons were analyzed in cats which had restricted or no visual experience. Two groups of animals were investigated: 1. cats which were deprived from contour vision over variable periods of time up to 1 year and 2. kittens whose visual experience was restricted to vertically oriented gratings of constant spatial frequency which moved unidirectionally at a fixed distance in front of the restrained animals. In both preparations exceedingly large receptive fields (up to 20° in diameter) were encountered, especially in cells located in supragranular layers. These large receptive fields never extended over more than 2° into the ipsilateral hemifield. Their sensitivity profile was frequently asymmetric and contained discontinuities. Many of these large receptive fields consisted of several excitatory subregions which were separated from each other by as much as 15°. Often but not always the most sensitive area was located where the retinotopic map predicted the receptive field center. The orientation and direction selectivity and also the angular separation of such multiple excitatory bands often matched precisely the orientation, direction and spatial frequency of the experienced moving grating. In other fields with multiple excitatory subregions such a correspondence could not be established; the various subregions could even have different orientation and direction selectivities. From these unconventional receptive fields it is concluded that the function of cat striate cortex is not confined to a point by point analysis of the visual field in retinotopically organized and functionally isolated columns.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1106
    Keywords: Visual cortex ; Current source density analysis ; Field potentials ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The current source density (CSD) method in its one-dimensional approximation is used to analyze the field potentials in visual areas 18 and 17 of the cat, which were elicited by stimulating electrodes in the optic chiasm (OX), the optic radiation (OR) or in the respective cortical area itself. The CSD analysis reveals the basic pattern of excitatory postsynaptic activity. 1. In both visual areas the basic specific excitatory activity flows along three different intracortical pathways, all starting in layer IV: The first pathway relays activity from layer IV to supragranular pyramidal cells via strong, local connections to layer III and from there through long-distance connections to layer II. The second pathway conveys activity from layer IV to layer V, where it mainly contacts apical dendrites of layer VI pyramidal cells. This infragranular polysynaptic activity is not clearly resolvable into separate components, suggesting that it is conveyed by various groups of axons, among them long-distance horizontal connections. The third pathway has one synaptic relay within layer IV and then conveys activity to layer III. In addition, monosynaptic activity is revealed in layers VI and I. 2. In A 18 one coherent, fast-conducting group of afferents induces this basic activity pattern. In A 17 no such fast conducting input is resolvable; the supragranular activity is induced by a small group of afferents with intermediate conduction velocity, which terminate in the upper part of layer IV. The infragranular activity is induced by afferents with slower and widely scattered conduction velocities, which terminate in the lower part of layer IV. The layer VI input is very prominent in A 17 and also has a wide latency scatter. 3. The supragranular activity is more prominent in A 18 than in A 17 and the respective layers appear thicker, in accordance with anatomy. In A 17 the infragranular activity prevails and layers IV and VI appear very broad, again in accordance with anatomy. 4. Comparison of the CSDs with the original evoked potentials shows that the surface evoked potentials over A 18 reflect the three dipolar sink/source distributions of the coherent monosynaptic activity in layer IV and of the two prominent polysynaptic activities in layers III and II. The widely scattered activity in the lower part of layer IV in A 17 and all infragranular activities in both areas generate smaller, partly closed-field potentials; those are not discernible from the strong far-field potentials which originate from the supragranular activity and — especially in A 17 —from farther distant events.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1106
    Keywords: Visual cortex ; Development ; Plasticity ; Intralaminar nuclei ; Kitten
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary It has been shown previously that surgical lesions of the antero-medial thalamus interfere with ocular dominance modifications that normally result from monocular deprivation in young kittens (Singer 1982). The aim of the present study was to determine whether this effect was due specifically to the destruction of the visual cortical projections of the anterior intralaminar nuclei. We report here that large excitotoxin lesions of the anterior dorsal thalamus have no effect on the cortical response to monocular deprivation. These data indicate that the intralaminar projection is not essential for ocular dominance plasticity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 70 (1988), S. 266-275 
    ISSN: 1432-1106
    Keywords: Calcium ; Plasticity ; Visual cortex ; Organic Ca2+-channel blockers
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary There are indications that during a critical period of visual cortex development Ca2+-fluxes from extra- to intracellular compartments serve as a trigger signal for experience-dependent changes of neuronal response properties. In this study we investigate the possibility of a relation between the time course of the critical period and age-dependent changes in the density and topographical distribution of Ca2+-channels. As a marker for the latter we used Ca2+-channel blockers of the 1,4-Dihydropyridine (1,4-DHP) class since these are supposed to bind to voltage-dependent Ca2+-channels. We used the tritiated 1,4-DHP derivative 3H-PN 200 110 for autoradiographic determination of 1,4-DHP binding sites in the visual cortex of adult cats and kittens ranging in age from two to ten weeks. The binding of 3H-PN 200 110 to slide-mounted tissue sections was saturable and of high affinity. The overall density of specific 3H-PN 200 110 binding sites decreased during development and their laminar distribution underwent marked changes: in young kittens specific binding was accentuated in lower layer IV, whereas in adult cats the supragranular layers were most intensely labeled. Dark rearing did not affect these developmental changes of 3H-PN 200 110 binding sites. The time course of the reduction of 1,4-DHP binding sites correlates well with that of the age-dependent decrease of the susceptibility to experience-dependent modifications. We consider this result as compatible with the hypothesis that use-dependent modifications of the response properties of cortical neurons involve changes in the Ca2+-fluxes from extra- to intracellular compartments.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 69 (1987), S. 213-219 
    ISSN: 1432-1106
    Keywords: Cortex slices ; Field potentials ; Current source density analysis ; Visual cortex
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The method of one-dimensional current source density (CSD) analysis was applied to field potentials recorded from 350 μm thick slices of the primary visual cortex of rats and cats. Field potentials were elicited by stimulation of the white matter and recorded along trajectories perpendicular to the cortical layers at spatial intervals of 25 to 50 μm. The resulting CSD distributions resembled closely those recorded from the cat visual cortex “in vivo”. The responses with the shortest latency were distinct sinks in layers IV and VI probably reflecting monosynaptic EPSP's from specific thalamic afferents. From layer IV activity was relayed along three major routes: 1. to the supragranular layers via strong local connections to layer III and from there via both short and long range connections to layer II, 2. to targets within layer IV, and 3. to layer V. The source distributions suggest that the projections to layers III and II terminate on the proximal and distal segments, respectively, of apical dendrites of layer III pyramidal cells while the projection to layer V contacts the apical dendrites of layer VI pyramidal cells. These results indicate that all the excitatory pathways that are detectable with the CSD technique in the “in vivo” preparation remain intact in 350 μm thick cortical slices. However, in the slice paired pulse stimulation did not lead to a depression of the response to the second stimulus while this is the case “in vivo”. This might be due to reduced inhibition in the slice which has been reported by several authors.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1106
    Keywords: Visual cortex ; Development ; Plasticity ; Central core ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Fifteen dark-reared, 4- to 5-week-old kittens were stimulated monocularly with patterned light while they were anesthetized and paralyzed. Six of these kittens were exposed to the light stimuli only, in four kittens the light stimuli were paired with electric stimulation of the mesencephalic reticular formation and in five kittens with electric activation of the medial thalamic nuclei. Throughout the conditioning period, the ocular dominance of neurons in the visual cortex was determined from evoked potentials that were elicited either with electric stimulation of the optic nerves or with phase reversing gratings of variable spatial frequencies. In two kittens, ocular dominance changes were assessed after the end of the conditioning period by analyzing single unit receptive fields. Monocular stimulation with patterned light induced a marked shift of ocular dominance toward the stimulated eye, when the light stimulus was paired with electric activation of either the mesencephalic reticular formation or of the medial thalamus. Moreover, a substantial fraction of cells acquired mature receptive fields. No such changes occurred with light or electric stimulation alone. It is concluded that central core projections which modulate cortical excitability gate experience-dependent modifications of connections in the kitten visual cortex.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...