Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (5)
  • Organic Chemistry  (3)
  • dissolution  (2)
Material
  • Electronic Resource  (5)
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Diabetologia 20 (1981), S. 51-53 
    ISSN: 1432-0428
    Keywords: Insulin ; crystal ; dissolution ; bicarbonate ; pH
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Insulin is insoluble in water at physiological pH, but dissolves relatively rapidly in plasma. To quantify the ability of various solutions to dissolve crystalline insulin, a simple assay measuring dissolution time was developed. At pH 7.5 and room temperature, distilled water, 0.154 mol/1 NaCl, Ringer's lactate solution, and 5% albumin in 0.154 mol/1 NaCl did not dissolve insulin crystals within 30 min. Normal postprandial human plasma and a proteinfree cell culture medium dissolved insulin crystals within 3 to 8 min. This ability was inhibited by acid titration of the fluids to a stable pH of 6.30, at which point bicarbonate depletion could be implied. Repletion of bicarbonate did restore the ability of these solutions to dissolve insulin crystals, but back-titration to the initial pH with NaOH did not. The effect of sodium bicarbonate alone was strongly concentration dependent above 23 mmol/1. We suggest that the ability of physiological fluids to dissolve insulin crystals at normal pH depends on their bicarbonate content. The ability to dissolve insulin with a physiological solvent which prevents its reaggregation promises to facilitate its use in portable pumping systems.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Diabetologia 21 (1981), S. 51-53 
    ISSN: 1432-0428
    Keywords: Insulin ; crystal ; dissolution ; bicarbonate ; pH
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Insulin is insoluble in water at physiological pH, but dissolves relatively rapidly in plasma. To quantify the ability of various solutions to dissolve crystalline insulin, a simple assay measuring dissolution time was developed. At pH 7.5 and room temperature, distilled water, 0.154 mol/l NaCl, Ringer's lactate solution, and 5% albumin in 0.154 mol/l NaCl did not dissolve insulin crystals within 30 min. Normal postprandial human plasma and a protein-free cell culture medium dissolved insulin crystals within 3 to 8 min. This ability was inhibited by acid titration of the fluids to a stable pH of 6.30, at which point bicarbonate depletion could be implied. Repletion of bicarbonate did restore the ability of these solutions to dissolve insulin crystals, but back-titration to the initial pH with NaOH did not. The effect of sodium bicarbonate alone was strongly concentration dependent above 23 mmol/l. We suggest that the ability of physiological fluids to dissolve insulin crystals at normal pH depends on their bicarbonate content. The ability to dissolve insulin with a physiological solvent which prevents its raggregation promises to facilitate its use in portable pumping systems.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0018-019X
    Keywords: Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Cycloaddition reactions of 5,6-dimethyl-1,2,3,4-dibenzo- and 5,6-dimethyl-1,2,3,4-tetraphenyl-calicene with diazo compounds, with dienes, and with dienophilic reagents are described.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Helvetica Chimica Acta 50 (1967), S. 1669-1692 
    ISSN: 0018-019X
    Keywords: Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The syntheses of 5,6-dimethyl-1,2;3,4-dibenzo- and 5,6-dimethyl-1,2,3,4-tetraphenyl-calicene and some of their physical and chemical properties are reported.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Helvetica Chimica Acta 55 (1972), S. 3057-3061 
    ISSN: 0018-019X
    Keywords: Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: 6-Hydroxy-dopamin (2, 4, 5-Trihydroxyphenäthylamin) (1) wird durch Sauerstoff oder durch Frémy-Salz nahezu quantitativ zu einem dunkelroten Chinon oxydiert, das sich in gelbe Hydrohalogenide überführen lässt. Das wahrscheinlich als Zwitterion 2 vorliegende Chinon ist in kristalliner Form stabil. In schwach alkalischer Lösung lagert es sich in 5, 6-Dihydroxy-indol (4) um. Alkalische Reduktion führt u.a. zu 5, 6-Dihydroxy-indolin, während unterhalb pH 7 hauptsächlich 6-Hydroxy-dopamin (1) zurückgebildet wird.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...