Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of thermal analysis and calorimetry 59 (2000), S. 435-450 
    ISSN: 1572-8943
    Keywords: ethylene copolymers ; model polyethylenes ; polyethytlene crystallization ; polyethylene melting ; polyethylene structure-properties ; random copolymers
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The crystallization and melting of three model polyethylenes of different chain structures have been studied. The polymers studied were a linear copolymer, hydrogenated poly(butadiene); a hydrogenated poly(butadiene)-atactic poly(propylene) diblock copolymer; and a three-arm star hydrogenated poly(butadiene). An important feature of this work was that the crystallizing portions of the copolymers all have the same molecular lengths. It was found that the overall crystallization rate decreases steadily from a linear to a diblock to the star copolymer. The differences in crystallization rates are related primarily to the activation energy for segmental transport. The non-crystallizable structure affects the segmental mobility to different degrees. An estimation of this effect is presented from the analysis of the overall crystallization rates using classical nucleation theory. In spite of thedifferences in their molecular structure, there are no major differences in the supermolecular structure of samples crystallized rapidly or slowly cooled. The melting process followed by DSC of the isothermally crystallized linear and star copolymers shows two endothermic peaks at intermediate undercoolings. The double melting is associated with a partitioning of crystallizable ethylene sequences during crystallization. The longest sequences are preferentially selected in the early stages of the crystallization. Single melting peaks are obtained for high and very low undercoolings for the linear and the star copolymers as well as for the diblock in the whole range of temperatures. The lack of the second, lower melting endotherm in the diblock could be associated with the influence in the crystallization process of the amorphous block in the microphase segregated melt.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 35 (1997), S. 213-223 
    ISSN: 0887-6266
    Keywords: stress-strain ; yield ; crystallite ; ethylene copolymer ; superstructure ; lamellae ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Nominal stress-strain curves of a series of random ethylene-hexene copolymers having narrow composition and most probable molecular weight distributions were investigated. A series of such molecular weight copolymers with a constant concentration of branches were crystallized under a variety of conditions. In each molecular weight series the level of crystallinity was approximately constant. Particular attention was focused on the yield region and the nature of the yielding process. It was found, quite surprisingly, that the yield stress was not solely dependent on the crystallinity level. Moreover, the shape of the force-elongation curve in the yield region was very dependent on the molecular weight and the crystallization mode. These changes in yielding correlated quite well with the overall crystallite structure that was characterized by thin section transmission electron microscopy. The orthorhombic unit cell of polyethylene was maintained in all the samples despite the changes that occurred in the overall crystallite structure. © 1997 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...