Library

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (73)
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 70 (1991), S. 3778-3784 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Implantation of MeV erbium ions into micron-thick silica and phosphosilicate glass films and 1200-A(ring)-thick Si3N4 films is studied with the aim of incorporating the rare-earth dopant on an optically active site in the network. Implantation energies and fluences range from 500 keV to 3.5 MeV and 3.8×1015 to 9.0×1016 ions/cm2. After proper thermal annealing, all implanted films show an intense and sharply peaked photoluminescence spectrum centered around λ = 1.54 μm. The fluorescence lifetime ranges from 6 to 15 ms for the silica-based glasses, depending on annealing treatment and Er concentration. Silicon nitride films show lower lifetimes, in the range 〈0.2–7 ms. Annealing characteristics of all materials are interpreted in terms of annealing of ion-induced network defects. These defects are identified using photoluminescence spectroscopy at 4.2 K. Concentration quenching, diffusion and precipitation behavior of Er is also studied.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 73 (1993), S. 8179-8183 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Soda-lime-silicate glass has been implanted with 500 keV Er ions at fluences between 8.6×1014 and 1.8×1016/cm2 with the aim to optically dope the material in the near surface region. The ion range was 100 nm, and Er concentrations in the range 0.09—1.9 at. % were obtained. The characteristic photoluminescence (PL) of Er3+ around 1.54 μm is observed at room temperature in as-implanted glass. The PL intensity increases by an order of magnitude after annealing above 500 °C, as a result of annihilation of implantation-induced defects. Annealing causes an increase in PL lifetime. As a function of Er fluence, the PL intensity first increases, but levels off above ∼6×1015 Er/cm2 (0.6 at. % Er peak concentration). The PL lifetime decreases from 13 to 1.5 ms for increasing Er concentration. The decrease in PL efficiency with concentration is attributed to concentration quenching caused by Er-Er interactions. The optimal combination of PL intensity and lifetime is reached at ≈0.4 at. % peak concentration, for which the lifetime is 6 ms. For high Er concentrations and high pump intensities (∼3 kW/cm2) an additional, intensity dependent quenching mechanism (possibly cooperative upconversion) is observed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 73 (1993), S. 1669-1674 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The effect of MeV ion irradiation damage on the luminescence lifetime of erbium-doped silica glass films has been studied. The 10-μm-thick films were first implanted with 3.5 MeV Er at a fluence of 5×1015 cm−2. When optically pumped at 488 nm, the films show a clear photoluminescence spectrum centered around 1.535 μm, corresponding to the 4I13/2→4I15/2 transition of Er3+(4f11), with a luminescence lifetime of 5.5 ms. After thermal annealing at 900 °C, the lifetime increases to 14.1 ms. Radiation damage was then introduced in the annealed films using 1 MeV He, 3.5 MeV C, 5.5 MeV Si, or 8.5 MeV Ge ions. The lifetime is decreased by irradiation with fluences as low as 1011 ions/cm2 and continues to decrease with fluence until saturation occurs above ≈1014 ions/cm2. The saturation lifetime is ion-mass dependent and ranges from 6.6 to 8.5 ms. The lifetime changes are explained in terms of nonradiative energy transfer processes caused by irradiation-induced defects in the silica. A model for lifetime changes as a function of ion fluence is derived, assuming an inverse relation between the nonradiative lifetime and the defect density. Fits to the data show that the defect generation rate is a sublinear function of the ion fluence. The ion damage effects are governed by the electronic component of the energy loss along the ion trajectories.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 67 (1990), S. 4024-4035 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Ion implantation, employing Si, Ar, and Cu ions in the energy range from 275 to 600 keV, was used to form amorphous silicon layers buried in a crystalline matrix. Different layer geometries were produced, with 150–620-nm-thick amorphous layers, separated from the surface by 120–350-nm-thick crystalline layers. Crystallization of the amorphous layers was induced by 32-ns pulsed ruby laser irradiation. Real-time reflectivity and conductivity measurements indicate that internal melting can be initiated at the amorphous-crystalline interface, immediately followed by explosive crystallization of the buried layer. Channeling and cross-section transmission electron microscopy reveal that in both Si(100) and Si(111) samples explosive crystallization proceeds epitaxially with twin formation, the twin density being higher in Si(111) than in Si(100). The measured crystal growth velocities range from 15 to 16 m/s, close to the fundamental limit for crystalline ordering at a Si liquid-crystalline interface. Computer modeling of heat flow and phase transformations supports the experimental data.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 91 (2002), S. 3955-3980 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Optical waveguide amplifiers based on polymer materials offer a low-cost alternative for inorganic waveguide amplifiers. Due to the fact that their refractive index is similar to that of standard optical fibers, they can be easily coupled to existing fibers with low coupling losses. Doping the polymer with rare-earth ions that yield optical gain is not straightforward, as the rare-earth salts are poorly soluble in the polymer matrix. This review article focuses on two different approaches to dope a polymer waveguide with rare-earth ions. The first approach is based on organic cage-like complexes that encapsulate the rare-earth ion and are designed to provide coordination sites to bind the rare-earth ion and to shield it from the surrounding matrix. These complexes also offer the possibility of attaching a highly absorbing antenna group, which increases the pump efficiency significantly. The second approach to fabricate rare-earth doped polymer waveguides is obtained by combining the excellent properties of SiO2 as a host for rare-earth ions with the easy processing of polymers. This is done by doping polymers with Er-doped silica colloidal spheres. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 92 (2002), S. 649-653 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Amorphous silicon a-Si was made by ion irradiation of crystalline silicon with 1×1015 Xe ions cm−2 at 77 K in the 1–4 MeV energy range. Thermal relaxation of the amorphous network at 500 °C for 1 h leads to an amorphous layer with a refractive index of n=3.73, significantly higher than that of crystalline silicon (n=3.45 at λ=1.55 μm). a-Si can thus serve as a waveguide core in Si based optical waveguides. Channel waveguides were made by anisotropic etching of a 1.5 μm silicon-on-insulator structure that was partly amorphized. Transmission measurements of these waveguides as function of the amorphous silicon length show that the a-Si part of the waveguides exhibit a modal propagation loss of 70 cm−1 (0.03 dB μm−1) and a bulk propagation loss of 115 cm−1 (0.05 dB μm−1). Losses due to sidewall roughness are estimated, and are negligible compared to the modal loss. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 88 (2000), S. 1992-1998 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The presence of silicon nanocrystals in Er doped SiO2 can enhance the effective Er optical absorption cross section by several orders of magnitude due to a strong coupling between quantum confined excitons and Er. This article studies the fundamental processes that determine the potential of Si nanocrystals as sensitizers for use in Er doped waveguide amplifiers or lasers. Silicon nanocrystals were formed in SiO2 using Si ion implantation and thermal annealing. The nanocrystal-doped SiO2 layer was implanted with different doses of Er, resulting in Er peak concentrations in the range 0.015–1.8 at. %. All samples show a broad nanocrystal-related luminescence spectrum centered around 800 nm and a sharp Er luminescence line at 1536 nm. By varying the Er concentration and measuring the nanocrystal and Er photoluminescence intensity, the nanocrystal excitation rate, the Er excitation and decay rate, and the Er saturation with pump power, we conclude that: (a) the maximum amount of Er that can be excited via exciton recombination in Si nanocrystals is 1–2 Er ions per nanocrystal, (b) the Er concentration limit can be explained by two different mechanisms occurring at high pump power, namely Auger de-excitation and pair-induced quenching, (c) the excitable Er ions are most likely located in an SiO2-like environment, and have a luminescence efficiency 〈18%, and (d) at a typical nanocrystal concentration of 1019 cm−3, the maximum optical gain at 1.54 μm of an Er-doped waveguide amplifier based on Si nanocrystal-doped SiO2 is ∼0.6 dB/cm. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 88 (2000), S. 4486-4490 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We present an investigation of Er3+ photoluminescence in Y2O3 waveguides codoped with Eu3+. As a function of europium concentration we observe an increase in decay rate of the erbium 4I11/2 energy level and an increase of the ratio of photoluminescence emission from the 4I13/2 and 4I11/2 states. Using a rate equation model, we show that this is due to an energy transfer from the 4I11/2→4I13/2 transition in erbium to europium. This increases the branching ratio of the 4I11/2 state towards the 4I13/2 state and results in a higher steady state population of the first excited state of erbium. Absolute intensity enhancement of the 4I13/2 emission is obtained for europium concentrations between 0.1 and 0.3 at. %. In addition, the photoluminescence due to upconversion processes originating from the 4I11/2 state is reduced. Using such state-selective energy transfer the efficiency of erbium doped waveguide amplifiers can be increased. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 78 (1995), S. 2642-2650 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The photoluminescence of erbium-doped semi-insulating polycrystalline and amorphous silicon containing 30 at. % oxygen is studied. The films were deposited on single-crystal Si substrates by chemical vapor deposition, implanted with 500 keV Er to fluences ranging from 0.05 to 6×1015 ions/cm2, and annealed at 300–1000 °C. Upon optical pumping near 500 nm, the samples show room-temperature luminescence around 1.54 μm due to intra-4f transitions in Er3+, excited by photogenerated carriers. The strongest luminescence is obtained after 400 °C annealing. Two classes of Er3+ can be distinguished, characterized by luminescence lifetimes of 170 and 800 μs. The classes are attributed to Er3+ in Si-rich and in O-rich environments. Photoluminescence excitation spectroscopy on a sample with 1×1015 Er/cm2 shows that ∼2% of the implanted Er is optically active. No quenching of the Er luminescence efficiency is observed between 77 K and room temperature in this Si-based semiconductor. The internal quantum efficiency for the excitation of Er3+ via photogenerated carriers is 10−3 at room temperature. A model is presented which explains the luminescence data in terms of trapping of electrical carriers at localized Er-related defects, and subsequent energy transfer to Er3+ ions, which can then decay by emission of 1.5 μm photons. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 75 (1994), S. 2809-2817 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Solid phase epitaxy of Er-implanted amorphous Si results in segregation and trapping of the Er, incorporating up to 2×1020 Er/cm3 in single-crystal Si. Segregation occurs despite an extremely low Er diffusivity in bulk amorphous Si of ≤10−17 cm2/s, and the narrow segregation spike (measured width ≈3 nm) suggests that kinetic trapping is responsible for the nonequilibrium concentrations of Er. The dependence of trapping on temperature, concentration, and impurities indicates instead that thermodynamics controls the segregation. We propose that Er, in analogy to transition metals, diffuses interstitially in amorphous Si, but is strongly bound at trapping centers. The binding enthalpy of these trapping sites causes the amorphous phase to be energetically favorable for Er, so that at low concentrations the Er is nearly completely segregated. Once the concentration of Er in the segregation spike exceeds the amorphous trap center concentration, though, more Er is trapped in the crystal. We also observe similar segregation and trapping behavior for another rare-earth element, Pr.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...