Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Il nuovo cimento della Società Italiana di Fisica 18 (1996), S. 1131-1148 
    ISSN: 0392-6737
    Keywords: Optoelectronic devices ; Conference proceedings
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Summary In this work we demonstrate that efficient light emission at 1.54 μm can be achieved when Er ions are incorporated into crystalline Si or in heavily oxygen-doped amorphous and polycrystalline Si films (SIPOS). We have found that temperature quenching of photo- and electroluminescence, which is the major limitation towards the achievement of room temperature luminescence, can be strongly reduced by codoping these films with oxygen. This impurity is already present in as-prepared SIPOS and it is introduced by ion-implantation in crystalline Si. Er luminescence is obtained under both optical and electrical excitation and we demonstrate that excitation occurs through a carrier-mediated process. Electrical excitation is obtained by incorporating Er in properly designed device structures. It is found that this excitation can occur both through the recombination of hole-electron pairs and through impact excitation of the Er ions by hot electrons. These two mechanisms have different efficiencies and impact excitation is shown to prevail at room temperature. These data are presented and possible future developments are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 55 (1989), S. 1097-1099 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: It is shown that amorphous silicon can be transformed to monocrystalline silicon via an explosive epitaxial crystallization process induced by pulsed laser irradiation. 370-nm-thick amorphous Si layers, buried beneath a 130-nm-thick crystalline surface layer, were irradiated with a 32 ns ruby laser pulse. Real-time reflectivity measurements indicate that internal melting can be initiated at the amorphous-crystalline interface, immediately followed by explosive crystallization of the buried amorphous Si layer. Channeling and cross-sectional transmission electron microscopy reveal that explosive crystallization proceeds epitaxially with formation of twins extending into the sample. The crystal growth velocity is determined to be 16.2±1.2 m/s, close to the fundamental limit for crystalline ordering at a liquid Si/Si(100) interface.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 65 (1994), S. 225-227 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: LiNbO3 single crystals (x cut) were implanted with 3.5-MeV Er ions with fluences up to 3×1016 cm−2. Upon annealing the implantation-amorphized surface layer regrows epitaxially, displaying either columnar or planar layer-by-layer growth, depending on the rate at which the samples are brought to the final temperature of 1060 °C. Low heating rates (≈10 °C/s) result in columnar regrowth, and 8-h anneals are necessary for complete dissolution of the grain boundaries. In contrast, using a rapid warm-up (100 °C/s), annealing for 1 min at 1060 °C is sufficient to restore a perfect crystal without grain boundaries. The advantage of the short anneal is that it leads to only minimal diffusion broadening of the Er profile. The maximum concentration of optically active Er ions is 0.18 at. %.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 65 (1994), S. 2487-2489 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The response of SiO2 thin films and implantation masks to 4.0 MeV Xe irradiation is studied. Trenches in silica deform dramatically after irradiation with 3×1015 ions/cm2. In situ wafer curvature measurements show that thin planar silica films first densify by 3.6% during irradiation. The resulting stress then relaxes viscously by radiation-enhanced Newtonian flow. At a flux of 3×1010 Xe ions/cm2s the measured shear viscosity was 6×1013Pa s. We find evidence that an irradiation induced anisotropic deformation mechanism is present in the silica films. In equilibrium, this deformation leads to an average compressive saturation stress as large as 4.5×107 Pa. © 1994 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 78 (1995), S. 4723-4732 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: In situ wafer curvature measurements were performed to study mechanical stress in amorphous SiO2 during Xe, Ne, and Er ion irradiation at energies in the 0.27–4.0 MeV range. Three phenomena are observed: network compaction, radiation-induced viscous flow, and a nonsaturating anisotropic deformation phenomenon. The radiation-induced viscosity is shown to be inversely proportional to the energy density deposited into atomic displacements. The relation between radiation-induced flow and diffusion is discussed in the context of the Stokes–Einstein relation. Viscous flow serves to relax stress, yet a continuous nonsaturating anisotropic deformation effect causes the stress in the irradiated layer to saturate at nonzero values: Xe irradiation at an energy below 3.6 MeV results in a tensile saturation stress; for higher energies a compressive stress builds up. These effects are explained in terms of competing bulk and surface deformation processes resulting from local heating of the SiO2 around the ion tracks. The macroscopic effect of deformation phenomena is illustrated by showing the surface morphology after 4.9 MeV Er irradiation of silica through a contact implantation mask. Finally, an in situ stress study of an alkali borosilicate glass is presented. In this case a fourth radiation induced effect is observed, namely, the generation and annihilation of volume occupying point defects. These defects are shown to anneal out at room temperature, following a broad spectrum of activation energies. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 78 (1995), S. 3874-3882 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We have studied the effect of erbium-impurity interactions on the 1.54 μm luminescence of Er3+ in crystalline Si. Float-zone and Czochralski-grown (100) oriented Si wafers were implanted with Er at a total dose of ∼1×1015/cm2. Some samples were also coimplanted with O, C, and F to realize uniform concentrations (up to 1020/cm3) of these impurities in the Er-doped region. Samples were analyzed by photoluminescence spectroscopy (PL) and electron paramagnetic resonance (EPR). Deep-level transient spectroscopy (DLTS) was also performed on p-n diodes implanted with Er at a dose of 6×1011/cm2 and codoped with impurities at a constant concentration of 1×1018/cm3. It was found that impurity codoping reduces the temperature quenching of the PL yield and that this reduction is more marked when the impurity concentration is increased. An EPR spectrum of sharp, anisotropic, lines is obtained for the sample codoped with 1020 O/cm3 but no clear EPR signal is observed without this codoping. The spectrum for the magnetic field B parallel to the [100] direction is similar to that expected for Er3+ in an approximately octahedral crystal field. DLTS analyses confirmed the formation of new Er3+ sites in the presence of the codoping impurities. In particular, a reduction in the density of the deepest levels has been observed and an impurity+Er-related level at ∼0.15 eV below the conduction band has been identified.This level is present in Er+O-, Er+F-, and Er+C-doped Si samples while it is not observed in samples solely doped with Er or with the codoping impurity only. We suggest that this new level causes efficient excitation of Er through the recombination of e-h pairs bound to this level. Temperature quenching is ascribed to the thermalization of bound electrons to the conduction band. We show that the attainment of well-defined impurity-related luminescent Er centers is responsible for both the luminescence enhancement at low temperatures and for the reduction of the temperature quenching of the luminescence. A quantitative model for the excitation and deexcitation processes of Er in Si is also proposed and shows good agreement with the experimental results. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 76 (1994), S. 5719-5723 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The redistribution of Ga in amorphous silicon (a-Si) in the temperature range of 560–830 K by means of medium-energy ion scattering has been studied. During the initial 10 s of the annealing the diffusivity shows a transient behavior that is attributed to the change in the relaxation state of the amorphous matrix. From 560 to 830 K the diffusivity during relaxation is enhanced by seven to two orders of magnitude compared to the value for bulk a-Si. Possible models that show the observed transient diffusion behavior are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 79 (1996), S. 1258-1266 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: When pumped with a 1.48 μm laser diode, Er-implanted Al2O3 ridge waveguides emit a broad spectrum consisting of several distinct peaks having wavelengths ranging from the midinfrared (1.53 μm) to the visible (520 nm). In order to explain these observations, three different upconversion mechanisms are considered: cooperative upconversion, excited state absorption, and pair-induced quenching. It is found that for samples with a high Er concentration (1.4 at. %), cooperative upconversion completely dominates the deexcitation of the Er3+ ions. For a much lower concentration (0.12 at. %), the influence of cooperative upconversion is strongly reduced, and another upconversion effect becomes apparent: excited state absorption. These conclusions are based on measurements of the luminescence emission versus pump intensity, and also on measured luminescence decay curves. The upconversion coefficient is found to be (4±1)×10−18 cm3/s; the excited state absorption cross section is (0.9±0.3)×10−21 cm2. It is shown that in spite of these upconversion effects, a high fraction of the Er3+ can be excited at low pump powers. For pump powers between 2 and 10 mW, the optimum Er concentration is calculated. The results show that for an Er concentration of 0.5 at. %, more than 2 dB/cm net optical gain is achievable at a pump power less than 10 mW. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 77 (1995), S. 6504-6510 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Room-temperature electroluminescence at 1.54 μm is demonstrated in erbium-implanted oxygen-doped silicon (27 at. % O), due to intra-4f transitions of the Er3+. The luminescence is electrically stimulated by biasing metal-(Si:O, Er)-p+ silicon diodes. The 30-nm-thick Si:O, Er films are amorphous layers deposited onto silicon substrates by chemical-vapor deposition of SiH4 and N2O, doped by ion implantation with Er to a concentration up to ≈1.5 at. %, and annealed in a rapid thermal annealing furnace. The most intense electroluminescence is obtained in samples annealed at 400 °C in reverse bias under breakdown conditions and it is attributed to impact excitation of erbium by hot carriers injected from the Si into the Si:O, Er layer. The electrical characteristics of the diode are studied in detail and related to the electroluminescence characteristics. A lower limit for the impact excitation cross section of ≈6×10−16 cm2 is obtained. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 75 (1994), S. 2809-2817 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Solid phase epitaxy of Er-implanted amorphous Si results in segregation and trapping of the Er, incorporating up to 2×1020 Er/cm3 in single-crystal Si. Segregation occurs despite an extremely low Er diffusivity in bulk amorphous Si of ≤10−17 cm2/s, and the narrow segregation spike (measured width ≈3 nm) suggests that kinetic trapping is responsible for the nonequilibrium concentrations of Er. The dependence of trapping on temperature, concentration, and impurities indicates instead that thermodynamics controls the segregation. We propose that Er, in analogy to transition metals, diffuses interstitially in amorphous Si, but is strongly bound at trapping centers. The binding enthalpy of these trapping sites causes the amorphous phase to be energetically favorable for Er, so that at low concentrations the Er is nearly completely segregated. Once the concentration of Er in the segregation spike exceeds the amorphous trap center concentration, though, more Er is trapped in the crystal. We also observe similar segregation and trapping behavior for another rare-earth element, Pr.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...