Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Materials science forum Vol. 83-87 (Jan. 1992), p. 203-208 
    ISSN: 1662-9752
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Il nuovo cimento della Società Italiana di Fisica 12 (1990), S. 1593-1601 
    ISSN: 0392-6737
    Keywords: Defects in crystals
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Summary Germanium, arsenic and krypton ions of 600 keV energy were implanted in 〈100〉 silicon substrate at 250°C. The hot implantation results in the formation of extended defects (dislocation loops and cluster of point defects) as residual damage. Rapid thermal annealing process at a temperature above 1000°C was used to remove the damage. Rutherford-backscattering channelling technique was used to measure the amount of defects and their annealing. In some cases the channelling results were correlated to transmission electron microscopy (TEM) analysis. The annealing process of the damage is governed by an activation energy of (4.4±0.2) eV for both germanium and arsenic implants. During RTA processes broadening of the As and Ge distributions is quite negligible. The Kr atoms interact instead with defects and the annealing even after a prolonged time at 1100°C is not complete, bubbles surrounded by extended defects are left
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Il nuovo cimento della Società Italiana di Fisica 18 (1996), S. 1131-1148 
    ISSN: 0392-6737
    Keywords: Optoelectronic devices ; Conference proceedings
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Summary In this work we demonstrate that efficient light emission at 1.54 μm can be achieved when Er ions are incorporated into crystalline Si or in heavily oxygen-doped amorphous and polycrystalline Si films (SIPOS). We have found that temperature quenching of photo- and electroluminescence, which is the major limitation towards the achievement of room temperature luminescence, can be strongly reduced by codoping these films with oxygen. This impurity is already present in as-prepared SIPOS and it is introduced by ion-implantation in crystalline Si. Er luminescence is obtained under both optical and electrical excitation and we demonstrate that excitation occurs through a carrier-mediated process. Electrical excitation is obtained by incorporating Er in properly designed device structures. It is found that this excitation can occur both through the recombination of hole-electron pairs and through impact excitation of the Er ions by hot electrons. These two mechanisms have different efficiencies and impact excitation is shown to prevail at room temperature. These data are presented and possible future developments are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 80 (1996), S. 161-166 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We have explored the mechanisms underlying the gettering of Pt atoms dissolved in crystalline Si. By using Pt implantation at different fluences followed by a thermal process at 970 °C for 5 h we were able to prepare crystalline silicon wafers containing a uniform Pt concentration in the range 2×1012–2×1014 atoms/cm3. Subsequently, a heavily doped n-type region was produced on one side of the wafer by P diffusion at 900 °C. Following this deposition process we have studied the kinetics of Pt gettering to the P-doped region in the temperature range 700–970 °C and for annealing times ranging from 30 min to 48 h. Lifetime measurements by means of a contactless technique were used to detect the depletion of Pt in the bulk of the wafer due to the gettering process. The large range of initial Pt concentrations that we have explored allowed us to identify and separate the kinetics and thermodynamics constraints that determine the gettering efficiency and to propose a phenomenological model for the gettering of Pt. In particular, it has been found that the kinetics of the gettering process are driven by the dissolution of immobile substitutional Pt atoms into interstitial sites. This process is assisted by Si self-interstitials and characterized by an activation energy of 0.4 eV. Moreover, the equilibrium distribution of Pt is thermodynamically determined by a segregation coefficient of the Pt atoms between the gettering sites and the silicon matrix. This segregation coefficient, and hence the gettering efficiency, decrease when the temperature of the gettering process is increased and is described by an activation energy of 2.5 eV. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 73 (1998), S. 1571-1573 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We have analyzed the perturbations produced by recombination at surface, trapping at impurities, and stress fields on the room-temperature migration properties of point defects in Si. A stack consisting of a Si oxide (or a Si nitride) and a polycrystalline Si layer, deposited on Si samples, was patterned to open 2-μm-wide, 10-μm-spaced stripes. A 40-keV Si implantation to fluences of 1×1012–5×1013/cm3, performed through this mask at room temperature, was used to inject point defects into the bulk of the wafer. After implants, defect-induced dopant deactivation, in the cross section orthogonal to the direction of the stripes, has been monitored using two-dimensional spreading resistance profilometry. It has been found that, in highly pure epitaxial Si samples, dopant deactivation extends in depth to several microns beyond the region (∼0.4 μm) directly modified by the ions. Furthermore, the two-dimensional deactivation profiles exhibit a strong recess at the surface and a significant anisotropy, being markedly elongated in the lateral direction. Analysis of the data shows that long-range migration of defects is interrupted by trapping at impurities (C and O) or recombination at the surface, characterized by a coefficient of ∼100 μm−1. Moreover, the lateral elongation of the profiles is tentatively explained assuming an anisotropy in the defect diffusivity tensor produced by the strain field under the mask. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 78 (1995), S. 3867-3873 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We have investigated the electronic properties of Er in crystalline Si using deep-level transient spectroscopy and capacitance-voltage measurements. Erbium was incorporated by ion implantation in a p+-n junction structure. In order to explore the role of oxygen and defects some samples were coimplanted with O and the annealing behavior of the deep-level spectra was explored in the temperature range 800–1000 °C for annealing times ranging from 5 s to 30 min. We show that O-codoping produces large modifications in the Er-related deep-level spectra and, in particular, a promotion from deep to shallow levels, thus enhancing the donor behavior of Er in Si. For erbium implanted in pure crystalline Si the spectrum is dominated by deep levels arising from Er-defect complexes which are easily dissociated upon thermal annealing. In O-coimplanted samples the formation of Er-O complexes with a characteristic level at EC−0.15 eV is observed. These complexes form upon thermal annealing and are stable up to 900 °C. These results are presented and possible implications for our current understanding of the mechanisms of Er photoluminescence in Si are discussed. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 78 (1995), S. 3874-3882 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We have studied the effect of erbium-impurity interactions on the 1.54 μm luminescence of Er3+ in crystalline Si. Float-zone and Czochralski-grown (100) oriented Si wafers were implanted with Er at a total dose of ∼1×1015/cm2. Some samples were also coimplanted with O, C, and F to realize uniform concentrations (up to 1020/cm3) of these impurities in the Er-doped region. Samples were analyzed by photoluminescence spectroscopy (PL) and electron paramagnetic resonance (EPR). Deep-level transient spectroscopy (DLTS) was also performed on p-n diodes implanted with Er at a dose of 6×1011/cm2 and codoped with impurities at a constant concentration of 1×1018/cm3. It was found that impurity codoping reduces the temperature quenching of the PL yield and that this reduction is more marked when the impurity concentration is increased. An EPR spectrum of sharp, anisotropic, lines is obtained for the sample codoped with 1020 O/cm3 but no clear EPR signal is observed without this codoping. The spectrum for the magnetic field B parallel to the [100] direction is similar to that expected for Er3+ in an approximately octahedral crystal field. DLTS analyses confirmed the formation of new Er3+ sites in the presence of the codoping impurities. In particular, a reduction in the density of the deepest levels has been observed and an impurity+Er-related level at ∼0.15 eV below the conduction band has been identified.This level is present in Er+O-, Er+F-, and Er+C-doped Si samples while it is not observed in samples solely doped with Er or with the codoping impurity only. We suggest that this new level causes efficient excitation of Er through the recombination of e-h pairs bound to this level. Temperature quenching is ascribed to the thermalization of bound electrons to the conduction band. We show that the attainment of well-defined impurity-related luminescent Er centers is responsible for both the luminescence enhancement at low temperatures and for the reduction of the temperature quenching of the luminescence. A quantitative model for the excitation and deexcitation processes of Er in Si is also proposed and shows good agreement with the experimental results. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 80 (1996), S. 4322-4327 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We have investigated the efficiency and the thermal stability of Pt gettering at different sites in crystalline Si. In particular, we compared the gettering performances of heavily n-type doped regions formed by P diffusion, cavities formed after high-temperature annealings of He implanted Si, and damage induced by ion implantation of B, C, or Si. These sites were introduced on one side of wafers containing a uniform Pt concentration in the range 1×1013–5×1014 atoms/cm3. The uniform concentration of Pt was attained by means of Pt implantation followed by a high-temperature thermal process. The gettering efficiency of the different sites was monitored during thermal processes at 700 °C for times ranging from 1 to 48 h. Thermal stability of gettering was investigated with a subsequent thermal process in the temperature range 750–900 °C during which part of the gettered Pt is released in the bulk of the wafer. The kinetics of Pt gettering at the different sites is found to be similar since it is fully dominated by the kick-out diffusion mechanism of the metal impurity. The thermal stability is instead site-dependent and can be described in terms of an effective binding enthalpy of 1.9, 2.6, and 3.0 eV between Pt atoms and cavities, P-doped region, and ion-implantation damage, respectively. The physical meaning of the binding enthalpy is investigated and discussed. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 74 (1993), S. 4936-4942 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The electrical and optical properties of Er-implanted Si are shown to be critically dependent on the presence of impurities and defects. A large enhancement in the electrical activation of Er (up to three orders of magnitude) is obtained by coimplanting Er with O or C at 300 °C. The use of C also allows one to obtain a good quality crystal after implantation and annealing. This is shown to be crucial in the photoluminescence process. In fact, in spite of the large amount of active Er atoms, photoluminescence is inhibited in the presence of the high concentration of precipitates and crystallographic defects which are left after annealing of the Er and O coimplants. The photoluminescence intensity is, on the other hand, enhanced by the high concentration of active Er atoms in the defect-free crystal which is left after annealing of the Er and C coimplants. Moreover, a clear shift in the main photoluminescence peaks is observed in Er- and C-coimplanted samples as a result of the different surroundings experienced by the Er atoms.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 74 (1993), S. 195-200 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The diffusion of ion-implanted Au, Pt, and Zn in crystalline Si has been investigated. The implantation was performed in photolithographically defined areas of the wafer and a spreading resistance technique was used to measure the three-dimensional concentration profiles of the metal atoms after high temperature diffusion anneals. We found that the lateral spread under the mask is larger than the vertical diffusion, especially on the sample side opposite to the implanted diffusion source. All the significant features of the measured profiles can be explained as a consequence of the kick-out mechanism of diffusion for these transition metals. In fact, the peculiar shape of the concentration profiles is determined by the interplay between the influx of interstitial metal atoms and the outflux of silicon self-interstitials generated by the kick-out reaction. Despite the high lateral diffusion, it will be shown that by a suitable combination of implantation fluence and annealing temperature it is possible to limit this lateral spread inside ∼200 μm, while maintaining a high metal concentration in the region under the implanted area. This demonstrates the possibility of using transition metal diffusion to control minority carrier lifetime in a selected area of a semiconductor device.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...