Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009
  • 1985-1989
  • 1965-1969  (4)
  • 1930-1934
  • 1920-1924
  • 1900-1904
  • 1966  (4)
Material
Years
  • 2005-2009
  • 1985-1989
  • 1965-1969  (4)
  • 1930-1934
  • 1920-1924
  • +
Year
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of medicinal chemistry 9 (1966), S. 46-48 
    ISSN: 1520-4804
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 212 (1966), S. 522-523 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The central organization and the functional significance of the powerful presynaptic inhibition of cutaneous afferent fibres2 cannot be examined in detail by using electrical stimulation of peripheral nerves, since neither is there a correlation between the nerve fibre threshold and the various ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 287 (1966), S. 56-80 
    ISSN: 1432-2013
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Description / Table of Contents: Summary 1. Active synaptic regions were identified in Mg-blocked nerve-muscle preparations (mainly M. cutaneous pectoris) of the frog by the recording of extracellular min.e.p.p.s. The search for these regions was helped by the use of high power dissecting microscopes and transmitted illumination. 2. E.p.p.s evoked by orthodromic stimulation and recorded at active synaptic regions were preceded by small all-or-nothing potential changes, the presynaptic nerve action potential (PNAP). Near the myelinated portion of the motor axon the PNAP had a triphasic positive-negative-positive shape with a predominantly negative deflection, whereas towards the ultimate end of the terminal the PNAP became more and more monophasic positive. 3. The conduction velocity of the PNAP was minimal near the transition from the myelinated axon to the non-myelinated nerve twigs and increased towards the end of the motor nerve terminal. The overall conduction velocity was around 30 cm/sec. 4. During repetitive stimulation at frequencies above 5/sec the PNAP was almost always smaller than its control value at 1/sec, whereas the e.p.p. showed the expected increase in amplitude. The actual size of the PNAP depended on the frequency of stimulation, on the number of preceding volleys, and on the Mg-concentration of the bathing solution. 5. After stimulation the PNAP remained depressed for periods from 30–60 msec after a single stimulus to some hundreds of msec after prolonged stimulation. There was no period of an increased PNAP following the period of the reduced PNAP. 6. Stimulating active synaptic regions through the recording microelectrode resulted in 30% of the trials in the appearance of antidromic spike potentials. The excitability cycle was investigated following single conditioning pulses. 7. It was concluded that: a) the PNAP actively invaded nerve terminals and was actively conducted over most of the length of the non-myelinated nerve twigs; b) negative afterpotentials (afterdepolarizations) which built up considerably during repetitive stimulation, reduced the size of the PNAP during and after tetanic trains; c) the size of the PNAP did not play a significant role in determining the amount of transmitter released by a presynaptic impulse.
    Notes: Zusammenfassung 1. Aktive synaptische Stellen auf Endplatten von Nerv-Muskel-Präparaten (meistens M. cutaneus pectoris) des Frosches wurden durch extracelluläre Ableitung von min.e.p.p. identifiziert. Zur Lokalisation der Endigungen wurde ein stark vergrößerndes Präpariermikroskop und durchfallende Beleuchtung benützt. 2. Das präsynaptische Nervenaktionspotential (PNAP) konnte nach orthodromer Reizung von aktiven synaptischen Stellen als kleine Potentialschwankung vor dem e.p.p. abgeleitet werden. Das PNAP war nahe dem markhaltigen Motoaxon triphasisch, positiv-negativ-positiv, mit einem überwiegend negativen Anteil, während es gegen das Ende der marklosen Fasern mehr und mehr einphasisch positiv wurde. 3. Die Leitungsgeschwindigkeit des PNAP hatte ihren kleinsten Wert am Übergang vom markhaltigen Axon zu den marklosen Zweigen und nahm dann im Verlauf der marklosen Fasern wieder zu. Die durchschnittliche Leitungsgeschwindigkeit im Verlauf der gesamten Endplatte betrug etwa 30 cm/sec. 4. Während tetanischer Reizung mit mehr als 5 Hz war das PNAP fast immer kleiner als sein Kontrollwert bei 1 Hz, während das e.p.p. die erwartete Zunahme zeigte. Die jeweilige Größe des PNAP hing ab von: der Reizfrequenz, der Zahl der vorhergegangenen Reize und von der Mg-Konzentration der Badelösung. 5. Nach Reizung blieb das PNAP zunächst klein und kehrte dann innerhalb 30–60 msec nach Einzelreiz bis zu einigen hundert msec nach langer tetanischer Reizung zur ursprünglichen Amplitude zurück. Das verkleinerte PNAP war nicht von einem anschließenden vergrößerten PNAP gefolgt. 6. Wurden aktive synaptische Stellen durch die Mikroelektrode gereizt, so konnte bei 30% aller Stellen ein antidromes Aktionspotential ausgelöst werden. Der Verlauf der Erregbarkeit nach einem Vorreiz wurde untersucht. 7. Aus diesen Versuchen wurde geschlossen: a) das PNAP wird aktiv in die marklosen Nervenfasern der Endplatte hinein- und mindestens über weite Strecken auch aktiv weitergeleitet; b) während und nach tetanischer Reizung wird die Amplitude des PNAP durch negative Nachpotentiale (Nachdepolarisationen), die sich bei repetitiver Reizung addieren, reduziert; c) die Größe des PNAP scheint keinen entscheidenden Einfluß auf die Menge des ACh zu haben, das durch einen präsynaptischen Impuls freigesetzt wird.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 287 (1966), S. 41-55 
    ISSN: 1432-2013
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Description / Table of Contents: Summary 1. E.p.p.s and min.e.p.p.s were recorded intracellularly from Mg-blocked nerve muscle preparations (M. sartorius and M. cutaneous pectoris) of summer and winter frogs in vitro. 2. Prolonged repetitive stimulation at frequencies above 5/sec induced synaptic facilitation (measured as e.p.p. increase) which continued to increase throughout the longest periods of stimulation tested (40 sec at 20/sec). For a given number of stimuli the facilitation was the greater the higher the frequency of stimulation. 3. Increasing the release of ACh per impulse by reducing the Mg-concentration of the bathing solution caused a levelling off and even a depression of the e.p.p.s in the course of tetanic stimulation, i.e. the pattern of the e.p.p. response shifted towards that found in curarized preparations. 4. After stimulation the e.p.p.s remained enlarged for periods from 100 to several hundreds of msec, depending on the number and frequency of the conditioning volleys. At frequencies below 100/sec the frequency of stimulation significantly influenced the amount and duration of the e.p.p. facilitation whereas at frequencies above 100/sec the duration of the e.p.p. facilitation was mainly determined by the number of conditioning volleys. 5. After stimulation the frequency of the spontaneous min.e.p.p.s was increased. This increase decayed to the control level with a time course similar to that of the e.p.p. facilitation. The possibility is discussed that these parallel changes of e.p.p. amplitude and min.e.p.p. frequency are probably due to a mobilization of transmitter from its presynaptic stores to the release sites.
    Notes: Zusammenfassung 1. An Mg-blockierten Nerv-Muskel-Präparaten in vitro (M. sartorius und M. cutaneous pectoris) von Sommer- und Winterfröschen wurden intracellulär e.p.p. und min.e.p.p. gemessen. 2. Lange tetanische Reizung mit Frequenzen von mehr als 5 Hz verursacht synaptische Bahnung (gemessen als e.p.p.-Vergrößerung). Diese Bahnung nimmt auch am Ende des längsten untersuchten Tetanus (40 sec bei 20 Hz) noch zu. Für eine gegebene Zahl von Reizen steigt die Bahnung mit der Reizfrequenz. 3. Bei Vergrößerung der pro Impuls freigesetzten Menge ACh durch eine Reduktion der Mg-Konzentration der Badelösung erreicht die e.p.p. Amplitude im Verlauf des Tetanus ein Plateau oder beginnt sogar abzunehmen, d.h. die e.p.p. verhalten sich mehr wie in curarisierten Präparaten. 4. Nach Reizung bleibt das e.p.p. gebahnt. Je nach Anzahl und Frequenz der Reize dauert die Bahnung hundert bis einige hundert Millisekunden an. Bei Reizfrequenzen von weniger als 100 Hz beeinflußt die Frequenz sowohl die Dauer als auch das Ausmaß der Potenzierung beträchtlich, während bei Frequenzen von mehr als 100 Hz die Dauer hauptsächlich durch die Zahl der Reize bestimmt wird. 5. Nach Reizung ist die Frequenz der spontanen min.e.p.p. erhöht. Mit einem Zeitverlauf ähnlich dem der e.p.p.-Potenzierung kehrt die Frequenz der min.e.p.p. wieder zum Ausgangswert zurück. Diese parallelen Veränderungen der e.p.p. Amplitude und der min.e.p.p. Häufigkeit sind wahrscheinlich durch eine vermehrte Bereitstellung (Mobilisation) von Überträgersubstanz am synaptischen Spalt aus den präsynaptischen Speichern verursacht.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...