Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (10)
  • 1990-1994  (2)
  • 1998  (9)
  • 1995  (1)
  • 1994  (2)
Material
Years
  • 1995-1999  (10)
  • 1990-1994  (2)
Year
Person/Organisation
Keywords
Language
  • 1
    Title: Aspects of set packing, partitioning, and covering. Zugl.: Berlin, Technische Universität, Diss. 1998
    Author: Borndörfer, Ralf
    Publisher: Aachen :Shaker,
    Year of publication: 1998
    Pages: 198 S.
    Series Statement: Berichte aus der Mathematik
    Type of Medium: Book
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-03-09
    Description: Dieser Artikel behandelt einen Ansatz zur zielorientierten Optimierung der Dienstplanung im ÖPNV. Der Ansatz zielt auf die vollständige Ausnutzung aller planerischen Freiheitsgrade unter korrekter Berücksichtigung von gesetzlichen, tariflichen, technischen und betrieblichen Rahmenbedingungen. Er basiert auf mathematischen Optimierungstechniken, die wir gegenwärtig in einem vom Bundesministerium für Bildung und Forschung ({\tt bmb+f}) geförderten Verbundprojekt in einer Kooperation zwischen der HanseCom GmbH, der IVU GmbH und dem Konrad-Zuse-Zentrum für Informationstechnik Berlin entwickeln. Es ist geplant, das Verfahren in die Softwareprodukte HOT II, MICROBUS II und OPUS zu integrieren. Verhandlungen mit den Berliner Verkehrsbetrieben über eine Projektbeteiligung und Integration unserer Software in BERTA sind zur Zeit im Gang. Wir beschreiben die Methodik des Ansatzes, diskutieren Aspekte seiner praktischen Verwendung, und wir berichten über den Stand der Entwicklung.
    Keywords: ddc:000
    Language: German
    Type: reportzib , doc-type:preprint
    Format: text/plain
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-08-05
    Language: English
    Type: doctoralthesis , doc-type:doctoralThesis
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-08-05
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-08-05
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-08-05
    Language: English
    Type: bookpart , doc-type:bookPart
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-08-05
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-08-05
    Description: The need to solve {\it transportation problems\/} was and still is one of the driving forces behind the development of the mathematical disciplines of graph theory, optimization, and operations research. Transportation problems seem to occur for the first time in the literature in the form of the four ''River Crossing Problems'' in the book Propositiones ad acuendos iuvenes. The {\it Propositiones\/} ---the oldest collection of mathematical problems written in Latin--- date back to the $8$th century A.D. and are attributed to Alcuin of York, one of the leading scholars of his time, a royal advisor to Charlemagne at his Frankish court. Alcuin's river crossing problems had no impact on the development of mathematics. However, they already display all the characteristics of today's large-scale real transportation problems. From our point of view, they could have been the starting point of combinatorics, optimization, and operations research. We show the potential of Alcuin's problems in this respect by investigating his problem~18 about a wolf, a goat and a bunch of cabbages with current mathematical methods. This way, we also provide the reader with a leisurely introduction into the modern theory of integer programming.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-03-09
    Description: {\def\NP{\hbox{$\cal N\kern-.1667em\cal P$}} The {\sl storage assignment problem} asks for the cost minimal assignment of containers with different sizes to storage locations with different capacities. Such problems arise, for instance, in the optimal control of automatic storage devices in flexible manufacturing systems. This problem is known to be $\NP$-hard in the strong sense. We show that the storage assignment problem is $\NP$-hard for {\sl bounded sizes and capacities}, even if the sizes have values $1$ and~$2$ and the capacities value~$2$ only, a case we encountered in practice. Moreover, we prove that no polynomial time $\epsilon$-approximation algorithm exists. This means that almost all storage assignment problems arising in practice are indeed hard.}
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-03-09
    Description: The world has experienced two hundred years of unprecedented advances in vehicle technology, transport system development, and traffic network extension. Technical progress continues but seems to have reached some limits. Congestion, pollution, and increasing costs have created, in some parts of the world, a climate of hostility against transportation technology. Mobility, however, is still increasing. What can be done? There is no panacea. Interdisciplinary cooperation is necessary, and we are going to argue in this paper that {\em Mathematics\/} can contribute significantly to the solution of some of the problems. We propose to employ methods developed in the {\em Theory of Optimization\/} to make better use of resources and existing technology. One way of optimization is better planning. We will point out that {\em Discrete Mathematics\/} provides a suitable framework for planning decisions within transportation systems. The mathematical approach leads to a better understanding of problems. Precise and quantitative models, and advanced mathematical tools allow for provable and reproducible conclusions. Modern computing equipment is suited to put such methods into practice. At present, mathematical methods contribute, in particular, to the solution of various problems of {\em operational planning}. We report about encouraging {\em results\/} achieved so far.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...