Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (2)
  • 1990-1994
  • 1998  (2)
Material
Years
  • 1995-1999  (2)
  • 1990-1994
Year
  • 1
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 73 (1998), S. 312-314 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The introduction of a thin layer of Al at the interface between Ti films and Si substrates enhances the formation of C49 TiSi2 and retards the transition from C49 to C54. An Al interlayer, 0.64 nm thick, reduces the time required to form C49 TiSi2 isothermally at 500 °C from 14 to 7 min. The C49–C54 transformation temperature is increased from 767 to 853 °C, when heating the samples at a constant ramp rate of 3 K/s. Most of the Al is found toward the interface between a Ti-rich silicide at the surface and TiSi2, rather than at the interface between TiSi2 and the Si substrate. The grain size of the C49 TiSi2 formed in the presence of Al is about five times smaller than that formed on a control sample with pure Ti, indicating that the increased density of grain boundaries in C49 TiSi2 in the presence of Al does not help the C49–C54 transformation. Therefore, the improved thermal stability of C49 TiSi2 is likely to be caused by other factors such as a reduced electron/atom ratio when replacing Si with Al in the disilicide. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 83 (1998), S. 90-99 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The interdiffusion of Cu and Sn, and the formation and dissolution of Cu–Sn precipitates have been examined for Cu alloy films. Cu(Sn) films were deposited by electron beam evaporation either as Sn/Cu bilayers or Cu/Sn/Cu trilayers, with overall Sn concentrations from 0.1 to 5 at. %. In situ resistance, calorimetry, electron, and x-ray diffraction measurements indicate that η–Cu6Sn5 forms during film deposition. Upon heating, ε–Cu3Sn forms at 170 °C, then this phase dissolves into the Cu matrix at approximately 350 °C. Finally, ζ–Cu10Sn3 forms and precipitates after thermal cycling to 500 °C. The final resistivity of Cu/Sn/Cu films with more than 2 at. % Sn exceeds 3.5 μΩ cm. However, resistivities from 1.9 to 2.5 μΩ cm after annealing were reached in Cu/Sn/Cu films with less than 2 at. % Sn. Auger and Rutherford backscattering analysis of Cu/Sn bilayers (1 mm thick) showed that the homogenization of Sn in Cu requires annealing in excess of 350 °C for 30 min; after annealing, the Sn concentration at the surface is approximately 20 at. %. The interdiffusion of Sn and Cu is inhibited by contamination at the Sn/Cu interface caused by air exposure. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...