Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009
  • 2000-2004  (2)
  • 1915-1919
  • 2002  (2)
Material
Years
  • 2005-2009
  • 2000-2004  (2)
  • 1915-1919
Year
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 91 (2002), S. 5474-5488 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A theory is presented together with simulation results that describe three-dimensional position detection of a sphere located in a highly focused beam by back-focal plane interferometry. This technique exploits the interference of scattered and unscattered light, which is projected on a quadrant photodiode placed in the back-focal plane of a condenser lens. Due to the Gouy-phase shift inherent in focused beams, it is not only possible to determine the lateral but also the axial position of a spherical particle with nanometer accuracy. In this paper we describe the calculation of arbitrary focused electromagnetic fields, the Gouy phase shift, Mie scattering by focused beams and the resulting position signals using the angular momentum representation. The accuracy and the sensitivity of the detection system are investigated theoretically for various sphere parameters. Both accuracy and sensitivity depend on the incident light distribution as well as on the particle's properties and position. It is further shown that the maximum capture angle of the detection lens influences the detector's sensitivity in a nonlinear manner. Additionally, for optical trapping applications the influence of the laser power is taken into account and is considered through a noise analysis. For all investigated trapping conditions the reconstructed position deviates on average 〈1 nm laterally and 〈5 nm axially from the actual particle position. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 417 (2002), S. 806-807 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The two best-known physical limitations are Abbe's resolution limit in optical physics and Heisenberg's uncertainty principle in quantum physics. Each defines a natural limit to the resolution or accuracy with which certain parameters can be measured. But, writing in Physical Review Letters, Marcus ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...