Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (3)
  • 1995-1999  (1)
Material
Years
Year
Person/Organisation
Keywords
Language
  • 1
    Title: Facets of combinatorial optimization /
    Contributer: Jünger, Michael , Reinelt, Gerhard
    Publisher: Berlin, [u. a.] :Springer,
    Year of publication: 2013
    Pages: XVII, 506 p. 245 illus., 162 illus. in color
    ISBN: 978-3-642-38189-8 , 978-3-642-38188-1
    Type of Medium: Book
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-08-05
    Description: In this paper we consider a variant of the classical ATSP, namely the asymmetric Hamiltonian path problem (or equivalently ATSP) with precedence constraints. In this problem precedences among the nodes are present, stating that a certain node has to precede others in any feasible sequence. This problem occurs as a basic model in scheduling and routing and has a wide range of applications varying from helicopter routing[Timlin89], sequencing in flexible manufacturing [AscheuerEscuderoGroetschelStoer90,AscheuerEscuderoGroetschelStoer93], to stacker crane routing in an automatic storage system[Ascheuer95]. We give an integer programming model and summarize known classes of valid inequalities. We describe in detail the implementation of a branch&-cut algorithm and give computational results on real world instances and benchmark problems from TSPLIB. The results we achieve indicate that our implementation outperforms other implementations found in the literature. Real world instances up to 174 nodes could be solved to optimality within a few minutes of CPU-time. As a side product we obtained a branch&cut-algorithm for the ATSP. All instances in TSPLIB could be solved to optimality in a reasonable amount of computing time.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-08-05
    Description: Usually complete linear descriptions of polytopes consist of an enormous number of facet-defining inequalities already for very small problem sizes. In this paper, we describe a method for dividing the inequalities into equivalence classes without resorting to a normal form. Within each class, facets are related by certain symmetries and it is sufficient to list one representative of each class to give a complete picture of the structural properties of a polytope. We propose an algorithm for the classification and illustrate its efficiency on a broad range of combinatorial optimization problems including the Traveling Salesman and the Linear Ordering Problem.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-08-05
    Description: The target visitation problem (TVP) is concerned with finding a route to visit a set of targets starting from and returning to some base. In addition to the distance traveled a tour is evaluated by taking also preferences into account which address the sequence in which the targets are visited. The problem thus is a combination of two well-known combinato- rial optimization problems: the traveling salesman and the linear ordering problem. In this paper we present several possible IP-Models for this problem and compared them to their usability for branch-and-cut approaches.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...