Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009
  • 1995-1999  (1)
  • 1975-1979
  • 1965-1969  (2)
  • Polymer and Materials Science  (2)
  • Cardiac Ca channels  (1)
  • 1
    ISSN: 1432-2013
    Keywords: Cardiac Ca channels ; Butanedione monoxime ; Phosphorylation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract A chemical phosphatase, butanedione monoxime (BDM, at 12–20 mM), reduced open probability (P 0) of single cardiac L-type Ca2+ channels in cellattached patches from guinea-pig ventricular myocytes, without effect on the amplitude of single-channel current, the mean open time or the mean shorter closed time, but it increased mean longer closed time and caused a fall in channel availability. A decrease in the mean time between first channel opening and last closing within a trace was principally due to an inhibition of the longer periods of activity. As a result, the time course of the mean currents, which resolved into an exponentially declining and a sustained component, was changed by an increase in the rate of the exponential phase and a profound reduction of the sustained current. Essentially similar results were obtained when studying whole-cell Ba2+ currents. The inactivation of the whole-cell Ca2+ currents was composed of two exponentially declining components with the slower showing a significantly greater sensitivity to BDM, an effect that was much more pronounced in myocytes exposed to isoprenaline with adenosine 5′-O-(3-thiotriphosphate) (ATP[γS]) in the pipette solution. The actions of BDM, which are the opposite of those produced by isoprenaline, suggest that the level of phosphorylation affects processes involved in the slow regulation of channel activity under basal conditions and that several sites (and probably several kinases) are involved. Channels with an inherently slow inactivation would seem to be converted into channels with a rapid inactivation by a dephosphorylation process.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 7 (1969), S. 527-537 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Dilatometric measurements were made to determine the change in apparent specific volume ϕ of DNA resulting from thermal denaturation in neutral solution, ϕ increased continuously with temperature in the range 10-85°C. No deviations from a monotonically rising curve were observed in the ϕ versus temperature profile in the region of the melting temperature. The results are interpreted in terms of a partial loss of the preferentially bound DNA hydration shell. The nature of the well known buoyant density difference between native and denatured DNA was investigated by evaluating the densities in a series of cesium salt gradients at constant temperature. Extrapolation of the results to zero water activity indicates that the partial specific volumes of anhydrous native and denatured DNA are equal. The density difference at nonzero water activities is attributed to decreased hydration in the denatured state. The absence of a related change in ϕ accompanying the denaturation in the dilatometric experiments suggests that the probable volume change associated with loss of bound water during denaturation is accompanied by other compensatory volume effects. The possible nature of these volume effects is discussed.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science Part A-1: Polymer Chemistry 4 (1966), S. 29-57 
    ISSN: 0449-296X
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The γ-radiation-induced free-radical copolymerization of ethylene and CO has been investigated over a wide range of pressure, initial gas composition, radiation intensity, and temperature. At 20°C., concentrations of CO up to 1% retard the polymerization of ethylene. Above this concentration the rate reaches a maximum between 27.5 and 39.2% CO and then decreases. The copolymer composition increases only from 40 to 50% CO when the gas mixture is varied from 5 to 90% CO. A relatively constant reactivity ratio is obtained at 20°C., indicating that CO adds 23.6 times as fast as an ethylene monomer to an ethylene free-radical chain end. For a 50% CO gas mixture, the above value of 23.6 and the copolymerization rate decrease with increasing temperature to 200°C. The kinetic data indicate a temperature-dependent depropagation reaction. Infrared examination of copolymers indicates a polyketone structure containing —CH2—CH2— and —CO— units. The crystalline melting point increases rapidly from 111 to 242°C., as the CO concentration in the copolymer increases from 27 to 50%. Molecular weight of copolymer formed at 20°C. increased with increasing CO, indicating M̄n values 〉20,000. Increasing reaction temperature results in decreasing molecular weight. Onset of decomposition for a 50% CO copolymer was measured at ≈250°C.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...