Library

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009  (1)
Material
Years
  • 2005-2009  (1)
Year
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Reperfusion after global brain ischemia results initially in a widespread suppression of protein synthesis in neurons that is due to inhibition of translation initiation as a result of the phosphorylation of the α-subunit of eukaryotic initiation factor 2 (eIF2). To address the role of the eIF2α kinase RNA-dependent protein kinase-like endoplasmic reticulum kinase (PERK) in the reperfused brain, transgenic mice with a targeted disruption of the Perk gene were subjected to 20 min of forebrain ischemia followed by 10 min of reperfusion. In wild-type mice, phosphorylated eIF2α was detected in the non-ischemic brain and its levels were elevated threefold after 10 min of reperfusion. Conversely, there was no phosphorylated eIF2α detected in the non-ischemic transgenic mice and there was no sizeable rise in phosphorylated eIF2α levels in the forebrain after ischemia and reperfusion. Moreover, there was a substantial rescue of protein translation in the reperfused transgenic mice. Neither group showed any change in total eIF2α, phosphorylated eukaryotic elongation factor 2 or total eukaryotic elongation factor 2 levels. These data demonstrate that PERK is responsible for the large increase in phosphorylated eIF2α and the suppression of translation early in reperfusion after transient global brain ischemia.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...