Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 17 (1973), S. 1449-1454 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A computer program has been devised for routine use which processes raw data such as polymer sample weight, moisture content, solution volume, and viscometer flow times to calculate a least-squares-derived intrinsic viscosity. In addition to eliminating errors inherent in graphic solutions and freeing technicians from tedious calculation, the computer output provides the 95% confidence interval of the intrinsic viscosity.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0935-9648
    Keywords: Sensors ; ISFETs and CHEMFETs ; Polysiloxanes ; Reference FETs ; Polymer Membranes ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Synthetic receptor molecules that selectively bind charged guests can store chemical information. The transduction of this information into electronic signals connects the chemical and electronic domains. Field effect transistors (FETs) are attractive transducing elements because these microdevices are able to register and amplify chemical changes at the gate oxide surface of the semiconductor chip.Integration of molecular receptors and field effect transistors into one chemical system gives a device that can communicate-changes of substrate activities in aqueous solution. Simulations of a system in which the receptor molecules are directly attached to the FET gate oxide indicate serious limitations with respect to sensitivity, dynamic range and extreme requirements for complex stability. Therefore we have concentrated on the integration of covalently attached thin membranes.The problem of the thermodynamically ill-defined oxidemembrane ipterface has been solved by applying a covalently linked hydrophilic polyhydroxyethylmethacrylate (polyHEMA) gel between the sensing membrane and the silylated gate oxide. A buffered aqueous electrolyte solution in the hydrogel renders the surface potential at the gate oxide constant via the dissociation equilibrium of the residual silanol groups. The subsequent attachment of a polysiloxane membrane that has the required dielectric constant, glass transition temperature Tg, and receptor molecule, provides a stable chemical system that transduces the complexation of cationic species into electronic signals (CHEMFET).The response to changing K⊕ concentrations in a solution of 0.1 M NaCl is fast (〈1 sec) and linear in the concentration range of 10-5-1.0 M (55-58 mV /decade). A reference FET (REFET) based on the same technology is obtained when the intrinsic sensitivity to changes in ion concentration is eliminated by the addition of 2.10-5 mol g-1 of didodecyldimethyl ammonium bromide to the ACE membrane. Differential measurements with a REFET/CHEMFET combination showed excellent linear K⊕ response over long periods of time.All chemical reactions used are compatible with planar IC technology and allow fabrication on wafer scale.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...