Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1572-8900
    Keywords: Cellulose acetate ; polymer degradation ; polymer biodegradation ; plastic film weight loss ; biodegradable polymers ; municipal solid waste ; compost simulation ; biodegradation testing ; moisture content ; synthetic compost mixes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Previous research in our laboratory reported a convenient laboratory-scale composting test method to study the weight loss of polymer films in aerobic thermophilic (53°C) reactors maintained at a 60% moisture content. The laboratory-scale compost reactors contained the following synthetic compost mixture (percentage on dry-weight basis): tree leaves (45.0), shredded paper (16.5), food (6.7), meat (5.8), cow manure (17.5), sawdust (1.9), aluminum and steel shavings (2.4), glass beads (1.3), urea (1.9), and a compost seed (1.0) which is designated Mix-1 in this work. To simplify the laboratory-scale compost weight loss test method and better understand how compost mixture compositions and environmental parameters affect the rate of plastic degradation, a systematic variation of the synthetic mixture composition as well as the moisture content was carried out. Cellulose acetate (CA) with a degree of substitution (DS) value of 1.7 and cellophane films were chosen as test polymer substrates for this work. The extent of CA DS-1.7 and cellophane weight loss as a function of the exposure time remained unchanged when the metal and glass components of the mixture were excluded in Mix-2. Further study showed that large variations in the mixture composition such as the replacement of tree leaves, food, meat, and sawdust with steam-exploded wood and alfalfa (forming Mix-C) could be made with little or no change in the time dependence of CA DS-1.7 film weight loss. In contrast, substituting tree leaves, food, meat, cow manure, and sawdust with steam-exploded wood in combination with either Rabbit Choice (Mix-D) or starch and urea (Mix-E) resulted in a significant time increase (from 7 to 12 days) for the complete disappearance of CA DS-1.7 films. Interestingly, in this work no direct correlation was observed between the C/N ratio (which ranged from 13.9 to 61.4) and the CA DS-1.7 film weight loss. Decreasing moisture contents of the compost Mix-2 from 60 and 50 and 40% resulted in dramatic changes in polymer degradation such that CA DS-1.7 showed an increase in the time period for a complete disappearance of polymer films from 6 to 16 and 30 days, respectively.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of polymers and the environment 1 (1993), S. 293-299 
    ISSN: 1572-8900
    Keywords: Composting ; polymer degradation ; polymer mineralization ; municipal solid waste ; compost simulation ; respirometry ; biodegradation testing
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract A respirometric method was developed to measure the mineralization of polymeric materials in a matured compost environment. For the purpose of evaluating the method, results obtained for the mineralization of glucose and cellulose are presented. The matured compost, in addition to supplied nutrients, micronutrients, and an inoculum, serves as the matrix which supports the microbial activity. Recovery of the substrate carbon in the form of carbon dioxide from the glucose and cellulose added to test vessels was 68 and 70%, respectively. A statistical evaluation of the results obtained on substrate mineralization was carried out and showed acceptable reproducibility between replicate test vessels and test runs. The testing protocol developed has the following important characteristics: (1) the test reactors are maintained at 53 °C at a high solids loading (60% moisture), which has certain characteristics that are similar to a thermophilic compost environment; (2) the test matrix providing microbial activity is derived from readily available organic materials to facilitate reproducibility of the method in different laboratories; (3) the equipment required to perform this test is relatively inexpensive; and (4) the information obtained on polymer mineralization is vital to the study and development of biodegradable polymeric materials.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Clinical Anatomy 4 (1991), S. 265-284 
    ISSN: 0897-3806
    Keywords: biomechanics ; anatomy ; fingers ; forces ; Life and Medical Sciences ; Miscellaneous Medical
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: As part of a study involving three-dimensional modeling of the hand, the intrinsic muscles of the hand were evaluated quantitatively to estimate the range of muscular forces crossing the fingers. The Brand method of dissection allowed determination of muscle volume, fiber length, and physiologic cross section to estimate the maximal force. The intrinsic muscles were grouped by components on the basis of their origins in the trilaminar scheme of Cunningham as (1) dorsal abductors from the central ray, exemplified by the bipennate dorsal interossei; (2) the intermediate layer consisting of inter-phalangeal joint extensors, exemplified by the unipennate palmar interossei with insertions into the extensor expansion; and (3) a superficial layer of adductors arising from the third metacarpal ridge, referred to as contrahentes.The fiber lengths of either component of the dorsal interossei averaged 1.3 cm. The intermediate layer of muscle, numbered as flexores breves (FB), included the palmar interossei FB4,7,9; the superficial components of the dorsal interossei FB3,5,6,8; and the accessory adductor pollicis FB2. Fiber lengths averaged 1.7 cm. The superficial heads of the flexor pollicis brevis and abductor digiti quinti are possibly the border representations of the intermediate layer as FB1 and FB10. The thenar muscles made up 37%, dorsal interossei 24%, palmar interossei (flexores breves) of the fingers 16%, lumbricals 7%, and hypothenar muscles 16% of the total intrinsic muscle mass.The ratio of muscle mass to fiber length, the physiologic cross-sectional area, is useful in estimating available force.This quantitative analysis of the intrinsic musculature may find application in the understanding of hand function and biomechanics.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...