Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (1)
  • 1990-1994  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 98 (1990), S. 149-159 
    ISSN: 1573-4919
    Keywords: FABP ; fatty acid ; cardiac energy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Summary Although abundant in most biological tissues and chemically well characterized, the fatty acid-binding protein (FABP) was until recently in search of a function. Because of its strong affinity for long chain fatty acids and its cytoplasmic origin, this protein was repeatedly claimed in the literature to be the transcytoplasmic fatty acid carrier. However, techniques to visualize and quantify the movements of molecules in the cytoplasm are still in their infancy. Consequently the carrier function of FABP remains somewhat speculative. However, FABP binds not only fatty acids but also their CoA and carnitine derivatives, two typical molecules of mitochondrial origin. Moreover, it has been demonstrated and confirmed that FABP is not exclusively cytoplasmic, but also mitochondrial. A function for FABP in the mitochondrial metabolism of fatty acids plus CoA and carnitine derivatives would therefore be anticpated. Using spin-labelling techniques, we present here evidence that FABP is a powerful regulator of acylcarnitine flux entering the mitochondrial β-oxidative system. In this perspective FABP appears to be an active link between the cytoplasm and the mitochondria, regulating the energy made available to the cell. This active participation of FABP is shown to be the consequence of its gradient-like distribution in the cardiac cell, and also of the coexistence of multispecies of this protein produced by self-aggregation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 264 (2000), S. 306-316 
    ISSN: 1617-4623
    Keywords: Cell cycle spo12 Mitosis cdc2 Schizosaccharomyces pombe
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. Hyperactivation of Cdc2 in fission yeast causes cells to undergo a lethal premature mitosis, a phenomenon called mitotic catastrophe. This phenotype is observed in cdc2-3w wee1-50 cells at high temperature and is suppressed by a single recessive mutant, mcs3-12. Mcs3 acts independently of the Wee1 kinase and Cdc25 phosphatase, two major regulators of Cdc2. We have isolated multicopy suppressors of the cell cycle arrest phenotype of mcs3-12 wee1-50 cdc25-22 cells, but did not identify the mcs3 gene itself. Instead several known mitotic regulators were isolated, including the Cdc25 phosphatase, Wis2 cyclophilin, Cek1 kinase, and an Hsp90 homologue, Swo1. We also isolated clones encoding non-functional, truncated forms of the Wee1 kinase and Dis2 type 1 phosphatase. In addition we identified a multicopy suppressor that encodes a structural homologue of the budding yeast SPO12 gene. We find that overexpression of fission yeast spo12 not only suppresses the phenotype of the mcs3-12 wee1-50 cdc25-22 strain, but also that of a win1-1 wee1-50 cdc25-22 strain at high temperature, indicating that the function of spo12 is not directly related to mcs3. We show that spo12 mRNA is periodically expressed during the fission yeast cell cycle, peaking at the G2/M transition coincidently with cdc15. Deletion of spo12, however, has no overt effect on either the mitotic or meiotic cell cycles, except when the function of the major B type cyclin, Cdc13, is compromised.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...