Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (1)
  • 1990-1994  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 14 (1991), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract. After a period of one week at 11m s−1 in a wind tunnel, the leaf surface of Picea sitchensis and Pinus sylvestris had undergone structural modification. Low-temperature scanning electron microscopy was used to examine these changes. Picea showed flattening and smearing of wax crystals, as well as cracks in some of the wax structures filling the stomatal antechambers. In Pinus, most damage was on the cells surrounding the stomatal antechamber or on needle ridges. Artificially abraded surfaces were of similar appearance. Minimum epidermal conductance to water vapour (geMIN) was determined gravimetrically. In PiceagcMIN was more than doubled by wind treatment and increased eightfold by rubbing. Similar but less extreme increases occurred in Pinus. Neither species showed recovery of geMIN after 1 week at low windspeed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1254
    Keywords: Key words Flowering ; Phenology ; Climate change ; Temperature
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geography , Physics
    Notes: Abstract  This paper examines the mean flowering times of 11 plant species in the British Isles over a 58-year period, and the flowering times of a further 13 (and leafing time of an additional 1) for a reduced period of 20 years. Timings were compared to Central England temperatures and all 25 phenological events were significantly related (P〈0.001 in all but 1 case) to temperature. These findings are discussed in relation to other published work. The conclusions drawn from this work are that timings of spring and summer species will get progressively earlier as the climate warms, but that the lower limit for a flowering date is probably best determined by examining species phenology at the southern limit of their distribution.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5036
    Keywords: Cytophaga sp. ; mucilage ; rhizosheath ; rhizosphere ; roots ; soil aggregation ; soil bacteria ; Zea mays (maize)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Mucilages from the root tips of axenically-grown maize and from a bacterium (Cytophaga sp.) isolated from the rhizosheaths of field-grown roots, were immobilized by drying onto nylon blotting membrane. The mucilage plaques remained in place through repeated rewettings and histochemical treatments. Staining of the plaques showed that both mucilages included acidic groups, and 1,2 diols (the latter notably fewer in bacterial mucilage). Bacterial mucilage plaques stained strongly for protein, plant mucilage was unstained. Plaques of both mucilages bound soil particles strongly if soil was applied to wet mucilage and then dried. Bound soil was not lost with rewetting. Dry weight and densitometer measurements showed that bacterial mucilage bound about 10% more soil than the same surface area of root-cap mucilage. Pretreatment of plaques with periodate oxidation eliminated most soil binding by root-cap mucilage but this was completely reversible by reduction with borohydride. Soil binding to bacterial mucilage was unaffected by periodate but much diminished by borohydride pretreatment (partially restored by subsequent oxidation). Neither pretreatment with cationic dyes nor preincubation in pectinase, pectin methylesterase or protease affected subsequent soil binding by the mucilage plaques. Pretreatment of root-cap mucilage plaques with lectins specific for component sugars also did not alter soil binding. It is concluded that mucilages of both plant and bacterial origin can contribute to the adhesion and cohesion of maize rhizosheaths, but each by a different mechanism. Binding by root-cap mucilage depends on 1,2 diol groups of component sugars, that of bacterial mucilage does not, and is likely to be protein mediated. ei]Section editor: R O D Dixon
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...