Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004
  • 1985-1989  (1)
  • 1975-1979
  • Individual distal tubule cells  (1)
  • 1
    ISSN: 1432-2013
    Keywords: Acute metabolic acidosis ; Renal distal electrolyte transport ; Renal cell electrolyte concentrations ; Individual distal tubule cells ; Transmembrane electrolyte concentration gradients ; Electron microprobe analysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract We studied the effect of acute metabolic acidosis on potassium, sodium and chloride gradients across the apical membrane of proximal and distal tubule cells by determining electrolyte concentrations in individual cells and in tubule fluid employing electron microprobe analysis. Cellular measurements were performed on freeze-dried cryosections of the renal cortex, analysis of tubule fluid electrolyte concentrations on freeze-dried microdroplets of micropuncture samples obtained from proximal and from early and late distal collection sites. Acidosis (NH4Cl i.v. and i.g.) induced a substantial rise in plasma potassium concentration without significant effects on cell potassium concentrations. Potassium concentrations along the surface distal tubule were also unaltered; thus the chemical driving force for potassium exit from cell to lumen was not affected by acidosis. In all but intercalated cells acidosis markedly increased cell phosphorus concentration and cell dry weight indicating cell shrinkage and thus diminution of cell potassium content. Because the increase in intracellular chloride concentration exceeded the increase in plasma chloride concentration, the chemical chloride gradient across the contraluminal membrane was markedly depressed by acidosis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...