Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (1)
  • 1985-1989  (1)
Material
Years
Year
  • 1
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Messenger ribonucleic acid encoding the alpha-subunit of calcium/calmodulin-dependent protein kinase II (camkII) is abundantly and constitutively expressed in dendrites of pyramidal and granule cell neurons of the adult hippocampus. Recent evidence suggests that camkII messenger ribonucleic acid is stored in a translationally dormant state within ribonucleic acid storage granules. Delivery of camkII messenger ribonucleic acid from sites of storage to sites of translation may therefore be a key step in activity-driven dendritic protein synthesis and synaptic plasticity. Here we explored possible camkII trafficking in the context of long-term potentiation in the dentate gyrus of awake, adult rats. Long-term potentiation was induced by patterned high-frequency stimulation, synaptodendrosomes containing pinched-off dendritic spines were obtained from microdissected dentate gyrus, and messenger ribonucleic acid levels were determined by real-time polymerase chain reaction. High-frequency stimulation triggered a rapid 2.5-fold increase in camkII messenger ribonucleic acid levels in the synaptodendrosome fraction. This increase occurred in the absence of camkII upregulation in the homogenate fraction, indicating trafficking of pre-existing messenger ribonucleic acid to synaptodendrosomes. The elevation in camkII messenger ribonucleic acid was paralleled by an increase in protein expression specific to the synaptodendrosome fraction, and followed by depletion of camkII message. Activity-dependent regulation of camkII messenger ribonucleic acid and protein did not require N-methyl-d-aspartate receptor activation. In contrast, N-methyl-d-aspartate receptor activation was required for induction of the immediate early genes zif268 and activity-regulated cytoskeleton-associated protein in dentate gyrus homogenates. The results support a model in which locally stored camkII messenger ribonucleic acid is rapidly transported to dendritic spines and translated during long-term potentiation in behaving rats.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Anatomy and embryology 179 (1989), S. 221-226 
    ISSN: 1432-0568
    Keywords: GABA ; Immunocytochemistry ; Gastrointestinal tract ; Epithelium ; Enteroendocrine cells ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Frozen sections of the corpus ventriculi, antrum pyloricum, duodenum, jejunum, ileum and colon from animals perfusion fixed with glutaraldehyde were treated with an antiserum specific for glutaraldehyde-fixed GABA and processed by the peroxidase antiperoxidase method. Semithin plastic sections from the antrum pyloricum were treated similarly. Stained cells appeared in the epithelium of all segments examined except the corpus ventriculi. The highest density of cells was observed along the major curvature of the antrum pyloricum. Here they were located in the bottom half of the gastric glands. Many of the cells showed a process extending towards the glandular lumen. No significant staining in the epithelium appeared when the antiserum was preincubated with glutaraldehyde-GABA complexes, nor when the anti-GABA serum was exchanged with anti-glycine or preimmune serum. The present findings and previous physiological data suggest that GABA may play a role in gut endocrine regulation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...