Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1106
    Keywords: Spinal Ia terminations ; GABA ; GABA receptors ; GABA-mimetics ; Bicuculline ; Amino acids ; Ouabain
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Amino acids were administered microelectrophoretically near the unmyelinated terminations of extensor muscle Ia afferent terminations stimulated electrically in the vicinity of lumbar motoneurones in anaesthetized cats. The predominant effect of one group (structurally related to GABA, poor substrates for in vitro amino acid uptake systems) was a reduction in the threshold (depolarization). The second group (including GABA and structural analogues which are substrates for GABA transport systems in vitro) had biphasic effects, an initial reduction being followed by an increase in threshold. The third group (structurally unrelated to GABA, substrates for amino acid uptake systems) only increased Ia termination thresholds. Reductions in termination thresholds, but not increases, were associated with diminution of synaptically evoked primary afferent depolarization, and were decreased by bicuculline methochloride. Many amino acids increased the electrical resistance of the intraspinal medium near the orifices of the barrels of seven barrel micropipettes, and for L-histidine, one of the third group of amino acids, both this effect and the increased threshold of terminations were reversibly modified by microelectrophoretic ouabain. These observations suggest that GABA-mimetics depolarize Ia terminations by interacting with bicuculline-sensitive receptors similar to those at hyperpolarizing gabergic synapses upon spinal interneurones. In addition, under the experimental conditions used, these and other amino acids increase termination thresholds, probably in the absence of any change in membrane conductance, an effect resulting from alterations in the ionic constitution of the extracellular medium around the orifices of micropipettes ejecting amino acids consequent upon the ouabain-sensitive co-transport of amino acids and sodium ions into neurones and glia.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 42 (1981), S. 158-170 
    ISSN: 1432-1106
    Keywords: Spinal cord ; Excitation ; Presynaptic ; Inhibition ; Baclofen ; Glutamergic ; Aspartergic ; Gabergic
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary When ejected microelectrophoretically near spinal interneurones of cats anaesthetised with pentobarbitone and under conditions where postsynaptic excitability was maintained artificially at a constant level, (−), but not (+), -baclofen selectively reduced monosynaptic excitation by impulses in low threshold muscle (Ia and Ib) and cutaneous (Aα) afferents. Polysynaptic excitation of interneurones and Renshaw cells by impulses in higher threshold afferents was less affected, and baclofen had little or no effect on the cholinergic monosynaptic excitation of Renshaw cells. Glycinergic and gabergic inhibitions of spinal neurones were relatively insensitive to baclofen. These stereospecific actions of baclofen, produced by either a reduction in the release of excitatory transmitter or postsynaptic antagonism, suggest that Ia, Ib, and Aα afferents may release the same excitatory transmitter which differs from that of spinal excitatory interneurones. Microelectrophoretic (−), but not (+), -baclofen also reduced primary afferent depolarization of ventral horn Ia extensor afferent terminations produced by impulses in low threshold flexor afferents, without altering either the electrical excitability of the terminations or their depolarization by electrophoretic GABA or L-glutamate. This stereospecific action of baclofen is interpreted as a reduction in the release of GABA at depolarizing axo-axonic synapses on Ia terminals.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0878
    Keywords: Enteric nervous system Myenteric neuron Intestine Muscle innervation Guinea pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. The axons of neurons that innervate the longitudinal muscle of the small intestine in small mammals such as rabbit, rat, guinea pig and mouse form a network, the tertiary plexus, against the inner surface of the muscle. In general, because of their substantial overlap, it has not been possible to follow the ramifications of individual axons in the tertiary plexus. In the present work, the longitudinal muscle motor neurons were filled with marker dyes through an intracellular microelectrode, and their morphologies and projections were examined in whole-mount preparations of longitudinal muscle and myenteric plexus. Most neurons that were examined were in the small intestine (ileum and duodenum), but a few were examined in the distal colon. Neurons in all regions had similar morphologies and projections. The cell bodies were amongst the smallest in myenteric ganglia, with major and minor axes of 14 µm and 25 µm (mean, n=40) in the plane of the myenteric plexus. Each neuron had a single axon that branched extensively in the tertiary plexus, most had multiple lamellar dendrites and a few had filamentous dendrites or a mixture of filamentous and lamellar dendrites. The mean area of muscle covered by an axon and its branches extended 1.6 mm orally to anally and 1.7 mm circumferentially. The area covered was 2.8±1.9 mm2 (mean ± SD, n=23). From the density of occurrence of cell bodies, it can be calculated that each point in the longitudinal muscle is innervated by the processes of about 100 motor neurons and is influenced by electrotonic conduction of signals through the muscle by about 300 motor neurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...