Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    European spine journal 9 (2000), S. S095 
    ISSN: 1432-0932
    Schlagwort(e): Key words Interbody cage ; Biomechanics ; Implant ; Stabilization ; Strength
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Abstract Interbody cages in the lumbar spine have met with mixed success in clinical studies. This has led many investigators to supplement cages with posterior instrumentation. The objective of this literature review is to address the mechanics of interbody cage fixation in the lumbar spine with respect to three-dimensional stabilization and the strength of the cage-vertebra interface. The effect of supplementary posterior fixation is reviewed. Only three-dimensional stabilization evaluations in human cadaveric models are included. These studies involve the application of different loads to the spine and the measurement of vertebral motion in flexion-extension, axial rotation, and lateral bending. There are no published studies which detected any differences between different cage designs. However, it does seem that cages inserted from an anterior direction provide better stabilization to the spine than those inserted from a posterior direction. In general, anterior cages stabilize better than posterior cages in axial rotation and lateral bending. Cages from both directions stabilized well in flexion, but not in extension. Supplementary posterior fixation with pedicle or translaminar screws substantially improves the stabilization in all directions. The strength of the cage-vertebra interface from studies using human cadaveric specimens is also reviewed. The axial compressive strength of this interface is highly dependent upon vertebral body bone density. Other factors such as preservation of the subchondral bony end-plate and cage design are clearly less important in the compressive strength. Supplementary posterior instrumentation does not enhance substantially the interface strength in axial compression.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1432-0932
    Schlagwort(e): Key words Spine ; Implant ; Pedicle screws ; Navigation ; Fluoroscopy
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Abstract A new computer-based navigation system for spinal surgery has been designed. This was achieved by combining intraoperative fluoroscopy-based imaging using conventional C-arm technology with freehand surgical navigation principles. Modules were developed to automate digital X-ray image registration. This is in contrast to existing computed tomography- (CT) based spinal navigation systems, which require a vertebra-based registration procedure. Cross-referencing of the image intensifier with the surgical object allows the real-time image-interactive navigation of surgical tools based on one single registered X-ray image, with no further image updates. Furthermore, the system allows the acquisition and real-time use of multiple registered images, which provides an advanced multi-directional control (pseudo 3D) during surgical action. Stereotactic instruments and graphical user interfaces for image-interactive transpedicular screw insertion have been developed. A detailed validation of the system was performed in the laboratory setting and throughout an early clinical trial including eight patients in two spine centers. Based on the resulting data, the new technique promises improved accuracy and safety in open and percutaneous spinal surgery.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...