Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0533
    Keywords: Key words Dystrophin-associated protein ; Laminin ; Peripheral nerve ; Schwann cell ; Regeneration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In Schwann cells, the transmembrane glycoprotein β-dystroglycan composes the dystroglycan complex, together with the extracellular glycoprotein α-dystroglycan which binds laminin-2, a major component of the Schwann cell basal lamina. To provide clues to the biological functions of the interaction of the dystroglycan complex with laminin-2 in peripheral nerve, the expression of β-dystroglycan and laminin-α2 chain was studied in rat sciatic nerves undergoing axonal degeneration and regeneration as well as in normal condition. In normal sciatic nerve, immunoreactivity for the cytoplasmic domain of β-dystroglycan was consistently and selectively localized in the Schwann cell cytoplasm underlying the outer (abaxonal) membrane apposing the basal lamina. While β-dystroglycan expression was gradually down-regulated in Schwann cells losing contact with axons during axonal degeneration, it was progressively up-regulated as the regenerating process of ensheathment and myelination proceeded during regeneration. Interestingly, β-dystroglycan expression, when detectable, was always restricted to the Schwann cell cytoplasm beneath the outer membrane apposing the basal lamina during both axonal degeneration and regeneration. Furthermore, laminin-α2 immunoreactivity roughly paralleled that of β-dystroglycan during both axonal degeneration and regeneration, indicating that the expression of β-dystroglycan and laminin-α2 is induced and maintained by the Schwann cell contact with axons. Our results indicate that the dystroglycan complex is involved in the adhesion of the Schwann cell outer membrane with the basal lamina and suggest that the dystroglycan complex may play a role in the process of Schwann cell ensheathment and myelination through the interaction with laminin-2.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1435-1536
    Keywords: Key words Colloidal crystal ; Fluorine-containing polymer ; Giant crystals ; Morphology ; Reflection spectra
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract  Gigantic colloidal single crystals (2–6 mm) are formed for fluorine-containing polymer spheres (120–210 nm in diameter) in exhaustively deionized aqueous suspensions. The spheres used are poly(tetrafluoroethylene) (PTFEA and PTFEB), copolymer of tetrafluoroethylene and perfluorovinylether (PFA) and copolymer of tetrafluoroethylene and perfluoropropylene (PTP). The phase diagrams of these spheres are obtained in the deionized suspensions and also in the presence of sodium chloride for PFA. The critical sphere concentrations of crystal melting (φ c) for these spheres are around 0.0006 in volume fraction, which are close to, but slightly larger than, those of monodispersed polystyrene spheres (φ c ≈ 0.00015) and colloidal silica spheres(φ c = 0.0002–0.0004) reported previously. The crystals are largest when the sphere concentrations are a bit higher than the φ c value and their size decreases as the sphere concentration increases. Reflection spectra are taken in sedimentation equilibrium as a function of the height from the bottom of the suspension. The static elastic modulus is estimated to be 10.8 and 28.7 Pa for PTFEA and PTP spheres at the sphere concentrations 0.00325 and 0.00322 in volume fraction, respectively.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...