Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (2)
Material
Years
Year
  • 1
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The emitted particles from pulsed-laser ablation (PLA), λ=193 nm and fluence=88–400 mJ/cm2, of frozen glycerol was examined using time-of-flight mass spectrometry. The data are analyzed using supersonic molecular-beam theory and the result is interpreted using a thermal/fluid-dynamic model. Both intact and fragmented glycerol are emitted in the PLA process at all fluences and their concentration ratio is fluence dependent. Fragmentation occurs predominantly at one of the C–C bonds forming CH2–OH (31 amu) and HO–CH2–CH–OH (61 amu). CH3 is produced at the target which requires the protonation of a CH2 fragment. At fluences higher than 250 mJ/cm2, ions are detected. These ions have very high velocity, 〉2000 m/s, and their intensity increases with fluences. PLA is thus not suitable for glycerol transfer under these conditions due to fragmentation. The data show that particle emission proceeds as a simple thermal vaporization process at fluences 〈200 mJ/cm2. Higher fluences will yield a Knudsen layer (KL), which is formed in front of the target surface. For fluences 〉300 mJ/cm2, particles from the KL go through unsteady adiabatic expansion prior to free flight. Models of particle and ion formation and interaction are proposed and discussed. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 78 (2001), S. 3169-3171 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Matrix-assisted pulsed laser evaporation direct write was investigated by ultrahigh speed optical microscopy. A composite barium–zirconium titanate/α-terpineol layer was irradiated by 355 nm laser pulses with a 150 ns pulse width, and it was observed that material removal does not begin until after the end of the pulse (t〉200 ns) and continues for 1 μs after the irradiation. The desorption plume consists of micron-size particles moving with a velocity of ∼0.2 km/s. The slow response is attributed to the combination of particle absorbers and highly viscous fluid. The ability to form continuous, pinhole-free coatings is due to slow coalescence of the particles. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...