Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 89 (2001), S. 5739-5746 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Pulsed laser deposition (PLD) has been used to fabricate polymer/carbon nanocomposite thin films for use in chemical sensors (chemiresistors). Ethylene vinyl acetate copolymer (EVA) films (undoped and 20% carbon by weight) were deposited using an ArF excimer laser (193 nm) at fluences between 150 and 300 mJ/cm2. The structure and morphology of the deposited films were characterized using Fourier transform infrared spectroscopy (FTIR), Raman scattering, and transmission and scanning electron microscopy (TEM). An analysis of the FTIR spectra indicates that a film deposited using an undoped EVA target is primarily polyethylene, suggesting that the acetate group is photochemically or photothermally removed from the starting material. Gas phase measurements of the laser-evaporated material using a quadrupole time of flight mass spectrometer confirm the production of the acetyl radical on the target surface. Analysis of TEM of films deposited using C-doped targets shows that the carbon black particles (initially 50 nm particles in 1 μm agglomerates) are broken down into particles that are ≤50 nm in the deposited film. Incorporation of carbon into the target reduces the degree of photochemical damage of the starting material, as shown in the FTIR spectra of the deposited film. The sensitivity and response time of chemiresistors fabricated from 6 μm thick composite films on top of gold electrodes were measured using toluene vapor (548 ppm). The chemiresistors exhibited a reversible and fast (〈1.3 s) response to the vapor. In comparison to data reported in the literature, chemiresistors fabricated from PLD films are significantly better than devices fabricated using a more conventional polymer film growth technique. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The emitted particles from pulsed-laser ablation (PLA), λ=193 nm and fluence=88–400 mJ/cm2, of frozen glycerol was examined using time-of-flight mass spectrometry. The data are analyzed using supersonic molecular-beam theory and the result is interpreted using a thermal/fluid-dynamic model. Both intact and fragmented glycerol are emitted in the PLA process at all fluences and their concentration ratio is fluence dependent. Fragmentation occurs predominantly at one of the C–C bonds forming CH2–OH (31 amu) and HO–CH2–CH–OH (61 amu). CH3 is produced at the target which requires the protonation of a CH2 fragment. At fluences higher than 250 mJ/cm2, ions are detected. These ions have very high velocity, 〉2000 m/s, and their intensity increases with fluences. PLA is thus not suitable for glycerol transfer under these conditions due to fragmentation. The data show that particle emission proceeds as a simple thermal vaporization process at fluences 〈200 mJ/cm2. Higher fluences will yield a Knudsen layer (KL), which is formed in front of the target surface. For fluences 〉300 mJ/cm2, particles from the KL go through unsteady adiabatic expansion prior to free flight. Models of particle and ion formation and interaction are proposed and discussed. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...