Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2826
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The role of pituitary adenylate cyclase-activating polypeptide (PACAP) type I receptor (PAC1 receptor) in regulating hypothalamic supraoptic neurones was investigated using PAC1 receptor-deficient male mice (PAC1−/−). The effects of PACAP on [Ca2+]i were investigated in freshly dissociated supraoptic neurones and on the somatodendritic release of vasopressin and oxytocin, examined on intact supraoptic nuclei. In supraoptic neurones from wild-type mice (PAC1+/+), 100 nm PACAP induced an increase in [Ca2+]i and release of vasopressin and oxytocin, whereas in heterozygous (PAC1+/−) and null-mutant mice (PAC1−/−), PACAP was much less effective. PACAP had no effect on these two parameters when applied to isolated neurohypophysial nerve terminals of PAC1+/+ and PAC1−/− mice, and rats. In conclusion, the PAC1 receptor is solely responsible for the PACAP-induced [Ca2+]i signalling and secretion of vasopressin and oxytocin in the somatodendritic region of supraoptic neurones.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2826
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: This study used a pharmacological approach to evaluate the consequences of the metabolic perturbations of neurotransmitters on brain development. Pregnant rats received p-chlorophenylalanine (pCPA), an inhibitor of serotonin (5-hydroxytryptamine, 5-HT) synthesis, or saline (control) from the 11th day of gestation once or daily up to the 15th, 17th and 20th day, followed by processing of the forebrain and/or nasal cranium of foetal males and females for high-performance liquid chromatography of monoamines, radioimmunoassay of gonadotropin-releasing hormone (GnRH) and quantitative and semiquantitative immunocytochemistry for GnRH. The pCPA treatment resulted in a 50–70% depletion of 5-HT in the nasal crania and forebrains at any studied age. Radioimmunoassay showed no change in GnRH content in 5-HT deficient foetuses at E16 compared to controls, being higher in both cases in the rostral forebrain than in the hypothalamus. In controls at E21, the GnRH content in the hypothalamus exceeded that in the rostral forebrain, whereas in the 5-HT deficient group the opposite was found. These data suggest that 5-HT provided a stimulating effect on GnRH neurone migration, and this was confirmed by quantification of GnRH-immunoreactive neurones in the forebrain along the trajectory of their migration. At E18 and E21, the fractions of GnRH neurones in the rostral part of the trajectory in pCPA-treated foetuses were greater than those in control foetuses but the opposite was true for the caudal part of the trajectory. Moreover, 5-HT appeared to control the proliferation of the precursor cells of GnRH neurones and their differentiation, as derived from the observations of the increased number of GnRH neurones in the forebrain of foetuses of both sexes, as well as the region-specific decreased neuronal size and content of GnRH in 5-HT-deficient females. Thus, 5-HT appears to contribute to the regulation of the origin, differentiation and migration of GnRH neurones.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    Journal of neuroendocrinology 15 (2003), S. 0 
    ISSN: 1365-2826
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: This study evaluated the influence of monoamines, serotonin (5-hydroxytryptamine, 5-HT) and noradrenaline, on differentiating gonadotropin-releasing hormone (GnRH)-producing neurones in foetal mice. The differentiation and migration of GnRH neurones were compared in Tg8 mice (the knocked-out gene encoding monoamine oxidase A) with increased levels of 5-HT and noradrenaline and in C3H mice with normal metabolism of monoamines in C3H mice. To achieve this, immunocytochemistry for GnRH combined with quantitative and semiquantitative image analysis were employed. GnRH neurones in foetuses at the 18th embryonic day were detected in the forebrain along the trajectory of their migration from the olfactory bulbs to the hypothalamic retrochiasmatic region. The total number of GnRH neurones in the forebrain in knockout mice was significantly lower compared to C3H mice, suggesting an inhibiting influence of monoamines on the proliferation of precursor cells. The fraction of GnRH neurones in the caudal part of the trajectory of their migration in Tg8 mice exceeded significantly those in C3H foetuses, whereas there was a reverse in the rostral part of the trajectory. These data suggest that an excess of 5-HT and noradrenaline served to accelerate the GnRH neurone migration in Tg8 mice. Moreover, an excess of 5-HT and noradrenaline provided a minor effect on the area and optical density of GnRH neurones (i.e. on GnRH neurone differentiation). Thus, an excess of 5-HT and noradrenaline appears to inhibit the proliferation of the precursor cells of GnRH neurones and stimulates the GnRH neurone migration to the place of their final location in the septo-preoptic region.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: In the male rat, serotoninergic neurons of the ventrolateral medulla send direct projections onto spinal preganglionic neurons that innervate the penis. The role of the paraventricular nucleus of the hypothalamus in the control of penile erection is well recognized. Our aim was to demonstrate anatomical relation between paraventricular neurons and medullary serotoninergic neurons innervating the penis. In adult male rats, stereotaxic iontophoretic injections of Phaseolus vulgaris leuco-agglutinin were performed in the paraventricular nucleus. Neurons in the ventrolateral medulla were retrogradely labelled using transneuronal retrograde transport of pseudorabies virus injected in the corpus cavernosum. Sections of the ventro-lateral medulla were processed for double immunofluorescence to reveal both Phaseolus vulgaris leuco-agglutinin and pseudorabies virus using specific antibodies. Sections were also processed for the simultaneous detection of pseudorabies virus and serotonin. Pseudorabies virus-infected neurons in the ventrolateral medulla were present in the nucleus paragigantocellularis, reticular formation of the medulla, raphe pallidus and raphe magnus. In the nucleus paragigantocellularis, all pseudorabies virus-infected-neurons were immunoreactive for serotonin. Some of them received Phaseolus vulgaris leuco-agglutinin-labelled varicose fibres that ran along the soma of pseudorabies virus-infected neurons. Confocal microscopy suggested the presence of several close appositions between them, which were demonstrated using three-dimensional reconstruction of serial optical sections. Our results show that paraventricular neurons send direct projections in the nucleus paragigantocellularis onto neurons that innervate the penis. They suggest a possible role of the paraventricular nucleus in penile erection through the control of descending serotoninergic raphe-spinal neurons. The neurotransmitter used in this pathway remains to be determined.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    European journal of neuroscience 17 (2003), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    European journal of neuroscience 17 (2003), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Nitric oxide (NO) is known to regulate the release of arginine-vasopressin (AVP) and oxytocin (OT) by the paraventricular nucleus (PVN) and the supraoptic nucleus (SON). The aim of the current study was to identify in these nuclei the NO-producing neurons and the NO-receptive cells in mice. The determination of NO-synthesizing neurons was performed by double immunohistochemistry for the neuronal form of NO synthase (NOS), and AVP or OT. Besides, we visualized the NO-receptive cells by detecting cyclic GMP (cGMP), the major second messenger for NO, by immunohistochemistry on hypothalamus slices. Neuronal NOS was exclusively colocalized with OT in the PVN and the SON, suggesting that NO is mainly synthesized by oxytocinergic neurons in mice. By contrast, cGMP was not observed in magnocellular neurons, but in GABA-, tyrosine hydroxylase- and glutamate-positive fibers, as well as in GFAP-stained cells. The cGMP-immunostaining was abolished by incubating brain slices with a NOS inhibitor (L-NAME). Consequently, we provide the first evidence that NO could regulate the release of AVP and OT indirectly by modulating the activity of the main afferents to magnocellular neurons rather than by acting directly on magnocellular neurons. Moreover, both the NADPH-diaphorase activity and the mean intensity of cGMP-immunofluorescence were increased in monoamine oxidase A knock-out mice (Tg8) compared to control mice (C3H) in both nuclei. This suggests that monoamines could enhance the production of NO, contributing by this way to the fine regulation of AVP and OT release and synthesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1608-3202
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Medicine
    Notes: Abstract Topographic interrelations of the arcuate nucleus (AN) neurons expressing the dopamine-synthesized enzymes, tyrosine hydroxylase (TH) and/or aromatic L-amino acid decarboxylase (AAD), as well as projections of axons of these neurons to the medial eminence were studied in male rats at the 21st embryonal and 9th postnatal days as well as in adult animals. The method of double immunocytochemical labeling and its modification were used to reveal these enzymes. For identification of immunoreactive neurons, a confocal microscope was used. At all ontogenetic stages, three populations of neurons were found, which differed by composition of the dopamine-synthesizing enzymes as well as by the character of topographic interrelations of the TH-expressing monoenzyme neurons with the AAD-expressing neurons. In ontogeny, the topographic tight junctions are formed between the monoenzyme TH- and AAD expressing neurons at the level of both the cell body and the distal axons, which seems to increase effectiveness of the L-dihydroxyphenylalanine (L-DOPA) transfer from the TH- to the AAD-expressing neurons. The TH- and AAD expressing monoenzyme neurons project their axons to the medial prominence to provide entrance of the products of the specific syntheses into the pituitary portal circulating system. Thus, the morphological data obtained confirm indirectly our hypothesis about a cooperative participation of the TH- and AAD-expressing monoenzyme neurons of the AN in the dopamine synthesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-899X
    Keywords: vasopressin ; tyrosine hydroxylase ; magnocellular neurons ; supraoptic nucleus ; hypophysis ; immunocytochemistry ; rats
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The dynamics of intracellular contents of vasopressin and tyrosine hydroxylase in neuron bodies were studied in the supraoptic nucleus and the distant segments of their axons in the posterior lobe of the hypophysis in rats in conditions of salt loading lasting one, two, and three weeks. The number of vasopressin–immunoreactive neurons increased by the end of the second week of osmotic stimulation, due to the onset of vasopressin synthesis in neurons not synthesizing this hormone in normal physiological conditions. The vasopressin concentration decreased in cell bodies and axons during the first two weeks of salt loading, apparently because vasopressin release occurred at a greater level than vasopressin synthesis. During the third week, the intracellular vasopressin content remained essentially constant, demonstrating the establishment of dynamic equilibrium between the synthesis and release of the hormone. The number of tyrosine hydroxylase–immunoreactive neurons and the levels of tyrosine hydroxylase in neuron bodies and axons, at least in the largest swellings (Herring bodies), gradually increased, demonstrating that the rate of tyrosine hydroxylase was greater than its rate of enzymatic degradation. Thus, chronic stimulation of vasopressin neurons was accompanied by a series of adaptive reactions, the most important of which appears to be the expression of vasopressin and tyrosine hydroxylase synthesis by neurons which do not normally synthesize these compounds.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...