Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (2)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 71 (2000), S. 2497-2499 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: We describe instrumentation for forming two-dimensional arrays of polymer microparticles produced from electrodynamically focused microdroplet streams. A single-stage linear quadrupole was used to focus droplets/particles onto silanated glass slides mounted on a computer-driven two-dimensional translation stage. Center-to-center position stability was on the order of 1 μm. Applications to molecular sorting with polymer particles as host carriers are discussed. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 77 (2000), S. 2515-2517 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We show that fourth-order dispersion functions of solid-phase polymers can be determined by multicolor optical diffraction. Electrodynamically trapped microparticles of polyethylene glycol with different molecular weights were probed by two-dimensional optical diffraction with four different laser wavelengths (632.8, 514.5, 488.0, and 457.9 nm); subsequent Mie analysis of one-dimensional scattering patterns yielded size and refractive index (both real and imaginary parts). Using a single wavelength as a size reference, the nonlinear dependence of the refractive index of solid (nonevaporating) polymer microparticles was determined by finding the refractive index for a given wavelength that best matched a Mie calculation subject to the reference size constraint. The experimentally determined refractive index values were fit to a standard fourth-order Cauchy function to obtain values for n0, n1, and n2. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...