Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (2)
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 113 (2000), S. 8253-8259 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: In this work we present a simple model for the kinetics of spreading of film-forming liquids on polymer gels. The model is compared with experiments and fair agreement is obtained. The spreading process can be theorized by considering the gel as a thick liquid layer containing a fibrous material (i.e., the polymer network). The spreading theory of Joos and Pintens is extended in such a way that the penetration of the flow into the bulk of the gel—which plays the major role in the kinetics of the spreading—is described by the Debye–Brinkman equation. It is also shown that spreading experiments can provide information on the surface structure of the underlying gel. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Colloid & polymer science 278 (2000), S. 884-887 
    ISSN: 1435-1536
    Keywords: Key words Yeast protoplast ; Membrane disruption ; Cooperativity ; Ionene polymer
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The binding of cationic ionenes onto budding protoplast was investigated and the results were associated with the cell viability. There are critical numbers of carbon atoms to induce effective cell disruption and cell binding. The longer the alkyl chain of the ionene, the lower the concentration at which cell disruption occurs. The ionenes with increased charge density undergo effective binding, while almost 2 orders of magnitude higher concentration are required for effective cell disruption. These results were associated with the cooperativity of the binding process, which induces local stress and solubilization of the lipid membrane.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...