Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (2)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 76 (2000), S. 742-744 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: High-quality AlGaN/GaN heterostructures have been grown by ammonia gas-source molecular-beam epitaxy on sapphire substrates. Incorporation of a low-temperature-grown AlN interlayer during the growth of a thick GaN buffer is shown to substantially increase the mobility of the piezoelectrically induced two-dimensional electron gas (2DEG) in unintentionally doped AlGaN/GaN heterostructures. For an optimized AlN interlayer thickness of 30 nm, electron mobilities as high as 1500 cm2/V s at room temperature, 10 310 cm2/V s at 77 K, and 12 000 cm2/V s at 0.3 K were obtained with sheet densities of 9×1012 cm−2 and 6×1012 cm−2 at room temperature and 77 K, respectively. The 2DEG was confirmed by strong and well-resolved Shubnikov–de Haas oscillations starting at 3.0 T. Photoluminescence measurements and atomic force microscopy revealed that the densities of native donors and grain boundaries were effectively reduced in the AlGaN/GaN heterostructures incorporating low-temperature-grown AlN interlayers. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 76 (2000), S. 1740-1742 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The effect of surface polarity on the growth of Mg-doped GaN thin films on c-plane sapphire substrates by molecular-beam epitaxy has been investigated. The doping behavior of Mg and resulting conductivity of the doped layers were found to strongly depend on the surface polarity of the growing GaN planes. The samples grown on the Ga-polar face (A face) exhibited a p-type conductivity with a free-hole concentration up to 5×1017 cm−3, while the samples grown on the N-polar face (B face) were highly resistive or semi-insulating. The incorporation of residual impurities (O, Si, and C) in the two different polar surfaces was studied by secondary ion mass spectrometry analysis and its effect on the Mg doping was discussed. Our results suggest that the A face (Ga face) is the favored surface polarity for achieving p-type conductivity during the growth of Mg-doped GaN. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...