Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (3)
Material
Years
Year
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: We investigated histamine concentration in post-mortem brain samples of patients with Parkinson's disease (PD, n = 24), multiple system atrophy (MSA, n = 8) and age-matched controls (n = 27). Histamine concentrations were significantly increased in the putamen (to 159% of the control mean), substantia nigra pars compacta (to 201%), internal globus pallidus (to 234%) and external globus pallidus (to 200%), i.e. in areas which play a crucial role in the motor behaviour and which show typical functional alterations in PD. In MSA no significant differences were seen. Tele-methylhistamine (histamine metabolite) concentrations were unchanged in PD. These results indicate that histamine concentration, but not its metabolism is increased in PD, but not in MSA. This finding may have implications in developing new drug therapies for PD and in differential diagnosis between PD and MSA.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    European journal of neuroscience 15 (2002), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The mRNA expression of three histamine receptors (H1, H2 and H3) and H1 and H3 receptor binding were mapped and quantified in normal human thalamus by in situ hybridization and receptor binding autoradiography, respectively. Immunohistochemistry was applied to study the distribution of histaminergic fibres and terminals in the normal human thalamus. mRNAs for all three histamine receptors were detected mainly in the dorsal thalamus, but the expression intensities were different. Briefly, H1 and H3 receptor mRNAs were relatively enriched in the anterior, medial, and part of the lateral nuclei regions; whereas the expression level was much lower in the ventral and posterior parts of the thalamus, and the reticular nucleus. H2 receptor mRNA displayed in general very low expression intensity with slightly higher expression level in the anterior and lateropolar regions. H1 receptor binding was mainly detected in the mediodorsal, ventroposterolateral nuclei, and the pulvinar. H3 receptor binding was detected mainly in the dorsal thalamus, predominantly the periventricular, mediodorsal, and posterior regions. Very high or high histaminergic fibre densities were observed in the midline nuclear region and other nuclei next to the third ventricle, ventroposterior lateral nucleus and medial geniculate nucleus. In most of the core structures of the thalamus, the fibre density was very low or absent. The results suggest that histamine in human brain regulates tactile and proprioceptory thalamocortical functions through multiple receptors. Also, other, e.g. visual areas and those not making cortical connections expressed histamine receptors and contained histaminergic nerve fibres.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Rats with portocaval anastomosis (PCA), an animal model of hepatic encephalopathy (HE), have very high brain histamine concentrations. Our previous studies based on a biochemical approach indicated histamine accumulation in the neuronal compartment. In this study, immunohistochemical evidence is presented which further supports the amine localization in histaminergic neurons. These neurons become pathological in appearance with cisternae frequently seen along histaminergic fibres in many brain areas, including the hypothalamus, amygdala, substantia nigra and cerebral cortex. Such formations were not observed in sham-operated animals. The neuronal deposition is predominant, and unique for histamine. It serves as a mechanism to counterbalance excessive brain neurotransmitter formation evoked by PCA. However, there are other mechanisms. The data provided here show that there is also a significant increase in histamine catabolism in the shunted rats, as reflected by both the higher brain N-tele-methylhistamine (t-MeHA) concentration and urinary excretion of N-tele-methylimidazoleacetic acid (t-MeImAA), a major brain histamine end product. The stomach, in addition to the brain, is a site of enhanced histamine synthesis in portocavally shunted subjects. After gastrectomy or food deprivation to eliminate the contribution of the stomach, shunted rats excrete significantly more t-MeImAA, implying the role of the CNS. This last finding suggests that under strictly defined conditions, namely in parenterally fed HE patients with abnormal plasma l-histidine, the measurement of urinary t-MeImAA might provide valuable information concerning putative brain histaminergic activity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...