Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (1)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Materials science forum Vol. 471-472 (Dec. 2004), p. 886-890 
    ISSN: 1662-9752
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: In this paper, the technique of high energy and short pulse duration laser impact isadopted. The substructural transformation characteristics and mechanisms of the austenitic stainless steel, subjected to strain-rate of 106s-1 order and stress of 2.70GPa, are investigated. SEM observations, there exists regular arrangement of chapped and equiaxed subgrain regions within the original grains. The size of the subgrain ranges from 0.1 to 0.5um; Meanwhile, the compacted deformation twin bundles with about 1um width each twin have been examined in the regions treated. It indicates that the equiaxed subgrains, close to nanometer scale, had evolved in the surface of austenitic stainless steel, and they belong to dynamic rotational recrystallization; Although, twinning deformation is not a frequent phenomenon in terms of austenitic stainless steel at room temperature, it will play a significant role when austenitic stainless steels are submitted to high strain rate and stress. Additionally, X-ray diffraction reveals that the crystal lattice constant is up 1.12% compared to the normal one and no deformation-induced α-martensite and amorphous phase are spotted within the processed regions
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...