Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 91 (2002), S. 5501-5503 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We report on a dynamic ultrahigh-strain-rate forming method driven by laser impact. This investigation reveals that laser shock forming is a mechanical, not a thermal process, and the strain rate can go up to 107–109 s−1, two or more orders higher than that of all the existing forming methods. By investigating the hardness and residual stress of the surfaces, we conclude that laser shock forming is a technique with combining laser shock strengthening and metal forming, which introduces strain hardening and compressive residual stresses. We also discover some nonlinear plastic deformation characters in laser shock forming. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Solid state phenomena Vol. 121-123 (Mar. 2007), p. 599-602 
    ISSN: 1662-9779
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Physics
    Notes: A numerical method based on Finite Difference Time Domain (FDTD)scheme for computing the photonic band-structure of three dimensional photoniccrystals is introduced in this paper. Also, the accuracy and stability, numericaldispersion, boundary Conditions as well as excitation attaching to the scheme aredetailed analyzed. For checking the method, the simulating results of photonic bandstructure on two type lattices are presented
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Materials science forum Vol. 471-472 (Dec. 2004), p. 692-696 
    ISSN: 1662-9752
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: An ingot aluminum alloy (Al-Cu-Mg-Ti-Sr) with high strength and high strain ratesuperplasticity has been successfully developed through a conventional manufacture route consisting of casting, heat treatment, hot extrusion with a low extrusion rate of only 10:1, hot-rolling and further cold-rolling, which is cost effective and suitable for large volume production industries. The tensile test result showed the alloy possesses not only a high ultimate strength of 513.85MPa at room temperature, but also a good high strain rate superplasticity with the tensile elongation of 174~224%, the flow stress of 17.1~33.9MPa and the strain rate sensitivity m-value of 0.174~0.293 in the initial strain rate of 3.16×10-2~1.0×10-1s-1 and at the temperature of 748K~793K. Differential scanning calorimeter (DSC) analysis showed that the superplastic deformation has no relationship with liquid phase. Scanning electron microscopy (SEM) analysis of fracture surface and surface showed that the superplastic deformation results from fine grain boundary sliding and dislocation slip
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Materials science forum Vol. 471-472 (Dec. 2004), p. 453-456 
    ISSN: 1662-9752
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The conventional forming of sheet metal is realized by the Die and Mould, this method usually give rise to high cost, long production periods and little flexibility. In order to adapt to the changing requirements of the market and make small batch production of three-dimensional parts of shallow stretching economically, a flexible forming technique of sheet metal based on laser shock waves is presented in this paper. After the forming mechanism and process are introduced, a finite-element analysis method is applied to simulate the shock forming process to obtain the optimized laser parameters and the shocking tracks. The experimental are carried out for the overlapped shock-forming, and the forming contour is measured and compared with the FEA simulation. The investigation provides the theoretical foundation for the selection of forming locus and processing parameters of flexible forming of sheet metal
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Materials science forum Vol. 471-472 (Dec. 2004), p. 746-749 
    ISSN: 1662-9752
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The interfacial adhesion between thin film and substrate is often the predominant factor and chief target in determining the performance and reliability of thin film/substrate system. A new technique of laser scratch testing technique has been presented by the authors of the article to characterize the interfacial adhesion between film and substrate, which synthesizes the advantages of traditional scratching technique and laser measure technique. The failure procedure is studieddetailedly in the article. On different failure step of the film/substrate system, there are different characteristic s of stress and strain, as well as the characteristic of thermal lensing effect, which can be used as the distinguishing rule of the bonding state of the film/substrate system
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Materials science forum Vol. 471-472 (Dec. 2004), p. 860-864 
    ISSN: 1662-9752
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Laser shock forming (LSF) is a new technique realized by applying a compressive shock wave generated by laser shocking on the surface of sheet metal. It is a mechanical, not a thermal process. After briefly reviewing the mechanism of LSF, instead of previously reported experimental research, a numerical simulation method of sheet deforming caused by laser shock waves ispresented. The process of laser-shock plastic deforming of sheet metal is simulated with ABAQUS software, the simulation results are compared and agree well with the experiments on the condition of single laser shocking. It is shown that numerical simulation is available for optimizing laser parameters and predicting the sheet deformation contour of laser shock forming process
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Materials science forum Vol. 471-472 (Dec. 2004), p. 886-890 
    ISSN: 1662-9752
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: In this paper, the technique of high energy and short pulse duration laser impact isadopted. The substructural transformation characteristics and mechanisms of the austenitic stainless steel, subjected to strain-rate of 106s-1 order and stress of 2.70GPa, are investigated. SEM observations, there exists regular arrangement of chapped and equiaxed subgrain regions within the original grains. The size of the subgrain ranges from 0.1 to 0.5um; Meanwhile, the compacted deformation twin bundles with about 1um width each twin have been examined in the regions treated. It indicates that the equiaxed subgrains, close to nanometer scale, had evolved in the surface of austenitic stainless steel, and they belong to dynamic rotational recrystallization; Although, twinning deformation is not a frequent phenomenon in terms of austenitic stainless steel at room temperature, it will play a significant role when austenitic stainless steels are submitted to high strain rate and stress. Additionally, X-ray diffraction reveals that the crystal lattice constant is up 1.12% compared to the normal one and no deformation-induced α-martensite and amorphous phase are spotted within the processed regions
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Advanced materials research Vol. 24-25 (Sept. 2007), p. 189-194 
    ISSN: 1662-8985
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Laser surface texturing (LST) technology that is firstly used in rollers, is a specializedsurface engineering process capable of enhancing the surface material properties, wear resistance,fretting fatigue life and reducing friction. This practical technology of the LST process is based on apulsating laser beam that, by material ablation, generates the optimum topographical surface. In orderto exploit the full potential of the process, a great amount of research has explored from the materialremoval mechanics to the development of the LST process. This paper reports on the LST researchinvolving the LST technology surveying process optimization, LST equipment and its industrialapplications. The paper also highlights the forming theory describing the skin-pass process oftransferring the textured roller’s surface structure onto the steel sheet, and the laser-matter interactionthat occurs when and intense laser beam is tightly focused in the workpiece surface. It presents theinfluence of various factors affecting the textured workpiece performance together with theinvestigations into tribology of textured components. The paper also discusses these developmentsand some fundamental on future LST research
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Key engineering materials Vol. 202-203 (June 2001), p. 265-270 
    ISSN: 1013-9826
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Key engineering materials Vol. 259-260 (Mar. 2004), p. 389-394 
    ISSN: 1013-9826
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...