Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (3)
  • 1975-1979  (2)
  • 1955-1959  (3)
  • 1950-1954  (2)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 20 (1997), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The frequency and duration of water on leaf surfaces have important consequences for plant growth and photosynthetic gas exchange. The objective of the present study was to compare the frequency and duration of leaf wetness under natural field conditions among species and to identify variation in structural features of leaves that may reduce surface wetness. During June–September 1992 in the central Rocky Mountains (USA), natural leaf wetting due to rain and dewfall was observed on 79 of 89 nights in open meadow habitats compared to only 29 of 89 nights in the understorey. Dew formation occurred at relative humidities that were often well below 100% because of radiational heat exchange with cold night skies and low wind speeds (〈 0.5 m s−1). A survey of 50 subalpine/montane species showed that structural characteristics associated with the occurrence and duration of leaf surface wetness differed among species and habitats. Both adaxial and abaxial surfaces accumulated moisture during rain and dewfall events. Leaf surfaces of open-meadow species were less wettable (P= 0.008), and had lower droplet retention (P= 0.015) and more stomata P= 0.017) than adjacent understorey species. Also, leaf trichomes reduced the area of leaf surface covered by moisture. Ecophysiological importance is suggested by the high frequency of leaf wetting events in open microsites, influences on growth and gas exchange, and correspondence between leaf surface wettability and habitat.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 22 (1999), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: In the alpine-treeline ecotone of the Snowy Range in Wyoming, USA, microsite sky exposure of Englemann spruce (Picea englemannii) and subalpine fir (Abies lasiocarpa) seedlings (〈 5 years) was associated with the avoidance of low-nocturnal temperatures and high insolation, factors which appeared to result in low-temperature photoinhibition. In a field experiment, light-saturated photosynthesis (Asat) in current-year seedlings (newly germinated) of fir increased significantly (approximately seven-fold) in response to increased long-wave irradiance at night (warming), solar shading (approximately five-fold), and the combination of the two treatments (approximately eight-fold). Asat in current-year spruce remained unchanged in response to all treatments, but was over four-times higher than fir in control plots. These results indicated substantial low-temperature photoinhibition, and were supported by similar Asat trends in natural seedlings. Increased needle inclination and clustering in more exposed microsites for both species implicates the possible role of structural adaptations for decreased sky exposure and warmer leaf temperatures at night.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 19 (1996), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The potential contribution of intercellular light reflectance to photosynthesis was investigated by infiltrating shade leaves with mineral oil. Infiltration of leaves of Hydrophyllum canadense and Asarum canadense with mineral oil decreased adaxial leaf reflectance but increased transmittance. As a result of the large increase in transmittance, infiltration caused a decrease in absorptance of 25% and 30% at 550 and 750 nm, respectively. Thus, intercellular reflectance increased absorptance in these species by this amount. In a comparison of sun and shade leaves of Acer saccharum and Parthenocissus quinquefolia, oil infiltration decreased absorptance more in shade than in sun leaves. This difference suggests that the higher proportion of spongy mesophyll in shade leaves may increase internal light scattering and thus absorptance. The importance of the spongy mesophyll in increasing internal reflectance was also evident in comparisons of the optics of Populus leaves and in the fluorescence yield of oil-infiltrated leaves of several sun and shade species. Oil infiltration decreased the quantum yield of fluorescence (Fo) by 39–52% for shade leaves but only 21–25% for sun leaves. We conclude that the greater proportion of spongy parenchyma in shade leaves increased intercellular light scattering and thus absorptance. Direct measurements with fibre-optic light probes of the distribution of light inside leaves of Hydrophyllum canadense confirmed that oil infiltration decreased the amount of back-scattered light and that most of the light scattering for this species occurred from the middle of the palisade layer to the middle of the spongy mesophyll. We were not, however, able to assess the potential contribution of reflectance from the internal abaxial epidermis to total internal light scattering in these experiments. Using a mathematical model to compare the response of net photosynthesis (O2, flux) to incident irradiance for control leaves of H. canadense and theoretical leaves with no intercellular reflectance, we calculated that intercellular reflectance caused a 1.97-fold increase in photosynthesis at 20 μmol m−2s−1 (incident photon flux density). This enhancement of absorption and photosynthesis by inter-cellular reflectance, without additional production and maintenance of photosynthetic pigments, may maintain shade leaves above the photosynthetic light compensation point between sunflecks and maintain the light induction state during protracted periods of low diffuse light.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Cambridge : Cambridge University Press
    The @classical review 5 (1955), S. 209-209 
    ISSN: 0009-840X
    Source: Cambridge Journals Digital Archives
    Topics: Classical Studies
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Cambridge : Cambridge University Press
    The @classical review 6 (1956), S. 72-73 
    ISSN: 0009-840X
    Source: Cambridge Journals Digital Archives
    Topics: Classical Studies
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Cambridge : Cambridge University Press
    The @classical review 6 (1956), S. 73-73 
    ISSN: 0009-840X
    Source: Cambridge Journals Digital Archives
    Topics: Classical Studies
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Cambridge : Cambridge University Press
    The @classical review 3 (1953), S. 58-58 
    ISSN: 0009-840X
    Source: Cambridge Journals Digital Archives
    Topics: Classical Studies
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 167 (1951), S. 557-558 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] For production of frequentin, the mould is best grown on Czapek-Dox medium (5 per cent glucose) for about ten days at 25 C. The active substance may be extracted from the culture filtrate by most organic solvents, including chloroform and carbon tetrachloride. On concentrating chloroform extracts, ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 41 (1979), S. 109-122 
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The influence of elevational changes on plant transpiration was evaluated using leaf energy balance equations and well-known elevational changes in the physical parameters that influence water vapor diffusion. Simulated transpirational fluxes for large leaves with low and high stomatal resistances to water vapor diffusion were compared to small leaves with identical stomatal resistances at elevations ranging from sea level to 4 km. The specific influence of various air temperature lapse rates was also tested. Validation of the simulated results was accomplished by comparing actual field measurements taken at a low elevation (300 m) desert site with similar measurements for a high elevation (2,560 m) mountain research site. Close agreement was observed between predicted and measured values of transpiration for the environmental and leaf parameters tested. Substantial increases in solar irradiation and the diffusion coefficient for water vapor in air (D wv) occurred with increasing elevation, while air and leaf temperatures, the water vapor concentration difference between the leaf and air, longwave irradiation, and the thermal conductivity coefficient for heat in air decreased with increasing elevation. These changes resulted in temperatures for sunlit leaves that were further above air temperature at higher elevations, especially for large leaves. For large leaves with low stomatal resistances, transpirational fluxes for low-elevation desert plants were close to those predicted for high-elevation plants even though the sunlit leaf temperatures of these mountain plants were over 10°C cooler. Simulating conditions with a low air temperature lapse rate (0.003° C m-1 and 0.004° C m-1) resulted in predicted transpirational fluxes that were greater than those calculated for the desert site. Transpiration for smaller leaves decreased with elevation for all lapse rates tested (0.003° C m-1 to 0.010° C m-1). However, transpirational fluxes at higher elevations were considerably greater than expected for all leaves, especially larger leaves, due to the strong influence of increased solar heating and a greater D wv. These results are discussed in terms of similarities in leaf structure and plant habit observed among low-elevation desert plants and high-elevation alpine and subalpine plants.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 43 (1979), S. 195-205 
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The temperature and water relations of the herbaceous, understory, congeners Arnica cordifolia and Arnica latifolia were evaluated in relation to the sunfleck dynamics of their respective microhabitats. Arnica cordifolia microhabitats had more frequent, longer, and more intense sunflecks than those of A. latifolia which led to higher leaf temperatures (31°C versus 15°C) and transpirational fluxes (65 μg cm-2 s-1 versus 16 μg cm-2 s-1). Stomatal closure did not occur in response to high leaf temperatures and low stem water potentials during natural sunfleck exposures, even though plants were observed to wilt during midday, especially A. cordifolia. Experimentally, an artificial midday sunfleck of about 165 min caused plants of A. cordifolia not to regain turgor after 8 h in shade compared to a sunfleck duration of about 90 min for plants of A. latifolia. However, these sunfleck intervals occurred naturally only during the early morning and late afternoon when solar intensities were minimal. Also, A. cordifolia populations had over twice as many plants that were sunlit (〉40% of total) compared with A. latifolia (〈20% of total) at any particular time during a day. The small-scale distribution of both species appears tightly coupled to the sunfleck dynamics of their respective microhabitats due to the lack of stomatal action which would reduce transpiration and improve plant water status under sunlit conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...