Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 14 (1991), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract. Because CO2 diffuses 10000 times more slowly through water than air, there may be strong selective pressure for increased water repellency in terrestrial plant leaves. In the present study, leaf trichomes appeared to have a strong influence on leaf water repellency (i.e. degree of water droplet formation on the leaf surface) as well as the retention of droplets on the leaf. Based upon evaluation of 38 plant species from 21 families, we found that leaves with trichomes were more water repellent, especially where trichome density was greater than 25mm2. However, droplet repellency and retention were both high in some species where trichomes entrapped droplets. Finally, the lensing effects of water droplets on leaf surfaces increased incident sunlight by over 20-fold directly beneath individual droplets. These results may have important implications for such processes as stomatal function, whole leaf photosynthesis, and transpiration for a large variety of plant species.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 20 (1997), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The frequency and duration of water on leaf surfaces have important consequences for plant growth and photosynthetic gas exchange. The objective of the present study was to compare the frequency and duration of leaf wetness under natural field conditions among species and to identify variation in structural features of leaves that may reduce surface wetness. During June–September 1992 in the central Rocky Mountains (USA), natural leaf wetting due to rain and dewfall was observed on 79 of 89 nights in open meadow habitats compared to only 29 of 89 nights in the understorey. Dew formation occurred at relative humidities that were often well below 100% because of radiational heat exchange with cold night skies and low wind speeds (〈 0.5 m s−1). A survey of 50 subalpine/montane species showed that structural characteristics associated with the occurrence and duration of leaf surface wetness differed among species and habitats. Both adaxial and abaxial surfaces accumulated moisture during rain and dewfall events. Leaf surfaces of open-meadow species were less wettable (P= 0.008), and had lower droplet retention (P= 0.015) and more stomata P= 0.017) than adjacent understorey species. Also, leaf trichomes reduced the area of leaf surface covered by moisture. Ecophysiological importance is suggested by the high frequency of leaf wetting events in open microsites, influences on growth and gas exchange, and correspondence between leaf surface wettability and habitat.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...