Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (2)
  • 1975-1979  (1)
  • Chemistry  (1)
  • Women  (1)
  • crop rotations  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 42 (1995), S. 61-75 
    ISSN: 1573-0867
    Keywords: potentially mineralizable N ; CERES model ; LEACHM model ; fertilizer N requirements ; crop rotations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Quantification of N dynamics in the ecosystem has taken on major significance in today's society, for economic and environmental reasons. A major fraction of the available N in soils is derived from the mineralization of organic matter. For decades, scientists have attempted to quantify the rate at which soils mineralize N, but the complexity of the N cycle has made this a major task. Further, agronomists have long sought soil test methods that are practical, yet will provide accurate means of predicting the amounts and rates of release of N from soils. Such tests would allow us to make more precise fertilization decisions. This paper discusses the potentially mineralizable N concept, first promoted by Stanford and colleagues [61, 62, 64], and suggests how it may be incorporated into deterministic models, such as CERES and LEACHM, so as to provide more accurate estimates of N mineralization under field conditions. We also suggest how the potentially mineralizable N concept may be coupled to quick, routine laboratory methods of determining available soil N, such as the hot 2M KCl extracted NH4-N method recently developed by Gianello and Bremner [35], and used together with deterministic N models, such as CERES, for predicting probable fertilizer N requirements.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 380 (1979), S. 205-210 
    ISSN: 1432-2013
    Keywords: Lactate ; Muscle fibers ; Recovery exercise ; Bicycle ergometer ; Women
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract After exercise the lactate (La) removal from blood occurs significantly faster during moderate exercise than at rest. However, under both conditions there are considerable inter-individual differences in La removal. These differences in man may depend on the slow-twitch (ST) fiber content of muscle (X1), the La concentration in blood (X2), and the intensity of the recovery exercise (X3). Therefore, multiple regression models were obtained to describe La removal rates with these variables. In 10 women La concentrations were increased via a 6 min bicycle ergometer ride (87%VO2 max) and blood La concentrations were measured every 5 min during 20 min resting and active recovery periods (29–49%VO2 max). For resting recovery only the initial La concentration after the 6 min exercise provided a significant description for La removal in 8 subjects (P=0.03). However, for the active recovery a highly significant description for La removal was obtained: La removal rate (mM/l · min)=0.773×10−2X1+0.321×10−1X2−0.120×10−1X3+0.202 (R=0.91;P=0.01). The statistical independence (P〉0.10) of each of these variables in the model suggests that each is contributing uniquely to the total removal rate of La observed during an active recovery period. The relationship between La removal and %ST fibers may be related to the metabolic and anatomical features of these fibers, the La concentration probably reflects the significance of the mass action effect of La, and the intensity of exercise reflects the role of the muscle's metabolic rate. The present results illustrate that the removal of blood lactate is influenced by the interactive effects of the intensity of the recovery exercise, blood lactate concentration and the ST fiber content of muscle.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Advanced Materials for Optics and Electronics 8 (1998), S. 101-105 
    ISSN: 1057-9257
    Keywords: biosensor ; protein immobilisation ; protein modification ; electrochemistry ; nitrotyrosine ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Electrical Engineering, Measurement and Control Technology , Physics
    Notes: Use of electrosynthetic methodology allows the production of hen egg-white lysozyme (HEWL) either mononitrated at tyrosine 23 or bisnitrated at tyrosines 20 and 23, but never nitrated at tyrosine 53. This is a different sequence from that obtained by the chemical nitrating agent tetranitromethane, and when reduced by dithionite, the selectively modified enzyme can be anchored at pH 5 via the unique aromatic amino group to magnetic beads or other suitable matrices. HEWL so immobilised loses less than 10% of cell-wall lytic activity compared with the approximately 50% loss of activity when immobilised by conventional methodology at pH 9 via essentially random reaction at lysine residues and other functionalities which are nucleophilic at this pH. This result offers promise as a general method for selective protein immobilisation in biosensors and similar applications. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 1 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...