Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 1995-1999  (4)
  • 1970-1974
  • immunocytochemistry  (2)
  • N-terminal amino acid-deleted mutant  (1)
  • alternative promoter  (1)
Materialart
Erscheinungszeitraum
  • 1995-1999  (4)
  • 1970-1974
Jahr
  • 1
    ISSN: 1435-1463
    Schlagwort(e): Catecholamine ; senescence-accelerated mouse (SAM-P8) ; immunocytochemistry ; aging
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary The catecholaminergic neurons of senescence-accelerated mice (SAM-P8) were analyzed by immunohistochemical microphotometry in terms of immunoreactivities to aromatic L-amino acid decarboxylase (AADC), dopamine (DA), or noradrenaline (NA). Accelerated senescence-resistant mice (SAM-R1) were used as control mice. The immunoreactivities to AADC, DA, and NA of the catecholaminergic neurons of the SAM-P8 mice were weaker than those of the SAM-R1 mice in all the brain regions. Immunoelectron microscopy revealed progressive degeneration of dopaminergic neurons and their terminal fibers in the substantia nigra as well as in noradrenergic neurons and their proximal dendrites in the locus coeruleus of the SAM-P8 mice. In contrast, there was no difference between the SAM-P8 and SAM-R1 mice in the distribution of AADC-only positive neurons (designated as D neurons in the rat brain by Jaeger et al.) nor in their immunoreactivities. These results may indicate that DA neurons in the substantia nigra and NA neurons in the locus coeruleus degenarate more rapidly during aging in SAM-P8 mice than in control SAM-R1 mice and that D neurons may function as a part of a compensatory system for the decreases in catecholaminergic neurons during aging.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Journal of neural transmission 106 (1999), S. 819-824 
    ISSN: 1435-1463
    Schlagwort(e): Keywords: Human tyrosine hydroxylase type 1 ; N-terminal amino acid-deleted mutant ; maltose-binding protein fusion.
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary. Wild-type and N-terminal 35-, 38-, and 44-amino acid-deleted mutants of human tyrosine hydroxylase type 1 (hTH1) fused to maltose-binding protein via the target sequence for a restriction protease were expressed in Escherichia coli and purified. The fused protein was treated with the restriction protease factor Xa or enterokinase to isolate hTH1 from the fused form. The treatment of fused wild-type and 35-amino acid-deleted mutant with factor Xa and enterokinase caused non-specific cleavages in the vicinity of the phosphorylation sites, Ser19 and Ser40, due to the flexible conformation of the N-terminus of hTH1.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    Springer
    Journal of neural transmission 102 (1995), S. 175-188 
    ISSN: 1435-1463
    Schlagwort(e): GTP cyclohydrolase I ; tyrosine hydroxylase ; tryptophan hydroxylase ; phenylalanine hydroxylase ; tetrahydrobiopterin ; liver ; adrenal medulla ; brain ; mouse ; immunocytochemistry
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary GTP cyclohydrolase I (GCH) is the first and rate-limiting enzyme for the biosynthesis of tetrahydrobiopterin (BH4), the cofactor of phenylalanine, tyrosine, and tryptophan hydroxylases, the enzymes that synthesize tyrosine, catecholamines (dopamine, noradrenaline, and adrenaline), and serotonin, respectively. We produced for the first time polyclonal antibody with highly sensitive immunoreactivity against an oligopeptide of rat enzyme, GFPERELPRPGA, by immunization of rabbits with the peptide conjugated to hemocyanin by glutaraldehyde. The specificity of the antibody was confirmed by Western blot analysis. Using this antibody specific for GCH, we observed strong GCH immunostaining in the liver cells, in the dopamine-, noradrenaline-, adrenaline-, or serotonin-containing cells of the brain, and in the adrenal gland of mice. Immunocytochemical studies revealed GCH to be localized in monoamine-containing perikarya in the periglomerular cells of the olfactory bulb, zona incerta, arcuate nucleus, ventral tegmental area, substantia nigra pars compacta, locus ceruleus, nucleus tractus solitarius, area postrema, and ventrolateral area of the medulla oblongata. GCH immunostaining was particularly strong in serotoninergic nuclei, such as dorsal and median raphe nuclei, nucleus raphe pallidus, and nucleus raphe magnus. By immunoelectron micoscopy, GCH-labeled cytoplasm and microtubules in the processes were observed ultrastructurally, but no staining was found in the mitochondria, and Golgi apparatus. Immunostaining was observed neither in the group D neurons that contain only aromatic amino acid decarboxylase without tyrosine hydroxylase, nor in glial cells and endothelial cells. These results indicate the abundant presence of GCH in catecholaminergic and serotoninergic neurons as well as in the adrenal medulla and liver, where BH4 is synthesized as the cofactor of tyrosine, tryptophan, and phenylalanine hydroxylases.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    ISSN: 1435-1463
    Schlagwort(e): Aromatic L-amino acid decarboxylase ; alternative promoter ; tissue-specific expression ; transfection experiment ; DNase I hypersensitive site
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary The human aromatic L-amino acid decarboxylase (AADC) gene is transcribed in a tissue-specific manner by an alternative promoter. In this study using human cultured cell lines, we analyzed the alternative promoter that regulates tissue-specific expression of AADC. Neither neuronalnor nonneuronal-type mRNA of AADC was detected in HeLa cells, nonneuronal-type mRNA of AADC was expressed in HepG2 cells, and the neuronal-type was expressed in the SK-N-SH cell line. We examined the promoter activities located in 5′- and 3′-flanking regions of exon N1 and exon L1 by transfection experiments. Plasmids containing 5′-flanking regions of exon L1, the shortest of which was 0.3kb, could promote specifically high expression of the reporter gene in HepG2 cells. On the other hand, plasmids containing 5′-flanking regions of exon N1 (3.6 kb to 0.5 kb) could promote the reporter gene expression not only in SK-N-SH cells but also in HeLa and HepG2. More enhanced expression were observed by transfection of plasmids containing parts of the first intron in these cell lines. Thus, these results suggest that the basal liver-specific promoter activity is located in the 5′-flanking region of exon L1 and that the first intron may also be needed for enhanced expression rather than determination of cell-specificity.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...