Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (2)
  • 1970-1974
  • Transcranial magnetic stimulation  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 107 (1996), S. 479-485 
    ISSN: 1432-1106
    Keywords: Transcranial magnetic stimulation ; Learning and memory ; Cortical physiology ; Human
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract We studied the role of the dorsolateral prefrontal cortex in procedural learning. Normal subjects completed several blocks of a serial reaction time task using only one hand without or with concurrent non-invasive repetitive transcranial magnetic stimulation. To disrupt their function transiently, stimulation was applied at low intensity over the supplementary motor area or over the dorsolateral prefrontal cortex contralateral or ipsilateral to the hand used for the test. Stimulation to the contralateral dorsolateral prefrontal cortex markedly impaired procedural implicit learning, as documented by the lack of significant change in response times during the task. Stimulation over the other areas did not interfere with learning. These results support the notion of a critical role of contralateral dorsolateral prefrontal structures in learning of motor sequences.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1106
    Keywords: Motor cortex ; Exercise ; Transcranial magnetic stimulation ; Inhibition ; Paired stimuli ; Human
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Transcranial magnetic stimulation (TMS) causes the corticospinal system to become refractory to subsequent stimuli for up to 200 ms. We examined the phenomenon of paired pulse inhibition with TMS under conditions of rest, ongoing voluntary activation (isometric force generation), and at variable delays following activation (postactivation) of the wrist extensors of seven normal subjects. Paired stimuli were delivered to the motor cortex with a circular coil at 1.1 times motor evoked potential (MEP) threshold, with various interstimulus intervals. Voluntary activation caused a marked decrease in the variability of the ratio of the amplitude of the MEP evoked by the test pulse to that of the MEP evoked by the conditioning pulse. Marked inhibition of the MEP evoked by the test pulse was still present. Postactivation, however, caused a dramatic reversal of the inhibitory effect of the conditioning pulse in all subjects at interstimulus intervals ranging from 40 to 120 ms. This effect lasted for up to 10 s following the cessation of activation. MEPs to transcranial electrical stimulation were also inhibited by conditioning TMS, but postactivation did not reverse this inhibition, indicating that the reversal of paired pulse inhibition is intracortical. We conjecture that paired pulse inhibition reflects activity of inhibitory interneurons or inhibitory connections between cortical output cells that are inactivated in the postactivation state.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...