Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1440-1703
    Keywords: Drepanotermes tamminensis ; harvesting rate ; Isoptera ; nutrient dynamics ; simulation model ; termites
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A series of papers have been published which describe the influence of vegetation and soil type on the Western Australian wheatbelt termite,Drepanotermes tamminensis (Hill), and also on its litter harvesting levels and contribution to the soil nutrient budget. This paper integrates these findings by means of a computer simulation model. The model consists of three modules which respectively describe the dynamics of litter on the ground, the dynamics of litter within termite mounds and how these in turn influence nutrient loads within the habitat. The outputs of the model suggest that this litter harvesting termite plays an important role in the nutrient dynamics of the area and it provides an estimate of the unmeasured variable, litter consumed in mounds by termites, which is consistent with measurements for other termite species with similar feeding habits.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    BIT 39 (1999), S. 757-779 
    ISSN: 1572-9125
    Keywords: Overdetermined linear systems ; rank reduction ; Hankel structure ; Toeplitz structure ; structured total least norm ; total least squares ; 1-norm ; 2-norm ; singular value decomposition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract The structure preserving rank reduction problem arises in many important applications. The singular value decomposition (SVD), while giving the closest low rank approximation to a given matrix in matrix L 2 norm and Frobenius norm, may not be appropriate for these applications since it does not preserve the given structure. We present a new method for structure preserving low rank approximation of a matrix, which is based on Structured Total Least Norm (STLN). The STLN is an efficient method for obtaining an approximate solution to an overdetermined linear system AX ≈ B, preserving the given linear structure in the perturbation [E F] such that (A + E)X = B + F. The approximate solution can be obtained to minimize the perturbation [E F] in the L p norm, where p = 1, 2, or ∞. An algorithm is described for Hankel structure preserving low rank approximation using STLN with L p norm. Computational results are presented, which show performances of the STLN based method for L 1 and L 2 norms for reduced rank approximation for Hankel matrices.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 41 (1998), S. 1133-1151 
    ISSN: 0029-5981
    Keywords: flow control ; numerical solution of Navier-Stokes equation ; Karhunen-Loève Galerkin procedure ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: A new method of solving the Navier-Stokes equations efficiently by reducing their number of modes is proposed in the present paper. It is based on the Karhunen-Loève decomposition which is a technique of obtaining empirical eigenfunctions from the experimental or numerical data of a system. Employing these empirical eigenfunctions as basis functions of a Galerkin procedure, one can a priori limit the function space considered to the smallest linear subspace that is sufficient to describe the observed phenomena, and consequently reduce the Navier-Stokes equation defined on a complicated geometry to a set of ordinary differential equations with a minimum degree of freedom. The present algorithm is well suited for the problems of flow control or optimization, where one has to compute the flow field repeatedly using the Navier-Stokes equation but one can also estimate the approximate solution space of the flow field based on the range of control variables. The low-dimensional dynamic model of viscous fluid flow derived by the present method is shown to produce accurate flow fields at a drastically reduced computational cost when compared with the finite difference solution of the Navier-Stokes equation. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...