Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    Communications in Numerical Methods in Engineering 11 (1995), S. 391-401 
    ISSN: 1069-8299
    Keywords: boundary element method ; two-dimensional potential problems ; logarithmic kernel ; derivative kernal ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: Both the logarithmic and derivative kernel integrations for potential problems, solved with quadratic isoparametric boundary elements, contain quartic functions of the integration parameter. It is shown that such functions can be written as the product of two quadratic functions with real coefficients. The derivative kernel integration is then represented as the sum of two integrals, which can be evaluated analytically. The logarithmic kernel integration can be similarly split but needs a Taylor series expansion of the Jacobian of the integration to enable analytical integration. The use of this Taylor series expansion means that the method presented is limited to problems involving weakly curved elements.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 23 (1996), S. 787-809 
    ISSN: 0271-2091
    Keywords: operator-splitting ; general algorithm ; characteristic-Galerkin ; laminar/turbulent ; incompressible ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: In an earlier paper, Zienkiewicz and Codina (Int. j. numer. methods fluids, 20, 869-885 (1995)) presented a general algorithm for the solution of both compressible and incompressible Navier-Stokes equations. The algorithm, based on operator splitting, permits arbitrary interpolation functions to be used while avoiding the Babŭska-Brezzi restriction. In addition, its characteristic based approach introduces a form of rational dissipation. Zienkiewicz et al. (Int. j. numer. methods fluids, 20, 887-913 (1995)) presented the application of this algorithm in its fully explicit form to various inviscid compressible flow problems. They also presented two incompressible flow problems solved by the fully explicit form, employing a pseudo compressibility. The present work deals with the application of the above algorithm it its semi-implicit form to some incompressible flow benchmark problems. Further, it extends the methodology to turbulent flows by employing both one, and two equation turbulence models. A comparison of results with earlier investigations is presented. Other issues addressed in this study include the effect of additional diffusion terms present in the scheme for both laminar and turbulent flow problems and some practical difficulties associated with local time stepping.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0029-5981
    Keywords: line relaxation ; unstructured mesh generation ; adaptivity ; compressible Navier-Stokes equations ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: An implicit-explicit procedure for the solution of the compressible Navier-Stokes equations on unstructured triangular and tetrahedral meshes is outlined. A procedure for constructing continuous lines, made up of edges in the mesh, is employed and the implicit equation system is solved via line relaxation. The problem of generating, and adapting, unstructured meshes for viscous flow simulations is addressed. A number of examples are included which demonstrate the numerical performance of the proposed procedures.
    Additional Material: 26 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 39 (1996), S. 549-567 
    ISSN: 0029-5981
    Keywords: unstructured mesh generation ; viscous compressible flows ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: A method of generating general tetrahedral meshes suitable for use in viscous flow simulations is proposed. The approach which is followed consists of the initial generation of a number of unstructured layers of highly stretched elements, in the vicinity of solid walls, followed by the discretisation of the remainder of the domain, by a standard advancing front procedure. The numerical performance of the proposed methodology is demonstrated by the generation of meshes suitable for viscous flow analysis over a number of three-dimensional aerodynamic configurations of current practical interest.
    Additional Material: 18 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 20 (1995), S. 887-913 
    ISSN: 0271-2091
    Keywords: compressible flow ; CFD (computational fluid dynamics) ; finite elements in fluids ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The algorithm introduced in Part I of this paper is applied in its explicit form to a variety of problems in order to demonstrate its wide range of applicability and excellent performance. Examples range from nearly incompressible, viscous, flows through transonic applications to high speed flows with shocks. In most examples linear triangular elements are used in the finite element approximation, but some use of quadratic approximation, again in triangles, indicates satisfactory performance even in the case of severe shocks.
    Additional Material: 23 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...