Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 29 (1995), S. 695-699 
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: We evaluated bone microhardness at the interface with hydroxyapatite-coated stainless-steel pins used in an external fracture fixation system. Pins were transversally inserted into the diaphyses of sheep tibiae and were loaded in for 6 weeks. Uncoated pins were implanted as controls. Microhardness analysis, based on the measure of the resistance of the bone to the penetration of a small diamond pyramid, yielded an accurate and reproducible measure of the mineralization degree and of the orientation of collagen fibers. Bone tissue close to the pin is less hard than bone tissue far from it. Moreover, the presence of hydroxyapatite coating on the pins did not significantly affect bone hardness; actually, the mean hardness at the interface with the pins was 56.9 Vickers degrees, whereas at the interface with the uncoated pins it was 62.2. It can be concluded that, 6 weeks postsurgery, the bone growing into the threadings of a loaded screwed implant reached maturity at a degree lower than that of the host both uncoated and coated implants. © 1995 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0021-9304
    Keywords: X-ray diffraction ; ceramic ; external fixation ; coating ; biocompatibility ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: The in vivo compatibility and degradation aspects of an innovative coating to be sprayed onto titanium implants were investigated. The surface of fluorinated apatite (fHA), consisting of fluorhydroxyapatite plasma sprayed in a vacuum atmosphere, was treated with carbonate to improve its biological compatibility. fHA coating was compared with titanium implants coated (a) with hydroxyapatite (HA) by the traditional plasma spraying, and (b) with titanium oxide (TiOx). Screw-shaped implants were inserted in the cortical bone of sheep tibiae. X-ray diffraction (XRD) analysis of bone tissue and coatings was carried out at 2, 4, 12 and 36 weeks after surgery. The crystallographic habit of the implant-facing bone, as well as the structural stability of the coating, were evaluated. For each time period and type of ceramic bone apatite lattice at the interface, no significantly different reference apatite lattice and no foreign peak were recorded. Two weeks after implantation, the bone at the interface was strongly unmineralized in all samples; after 4 weeks, poorly mineralized bone microareas decreased. At 12 weeks, the newly formed bone tissue at the interface with both the new coating and HA coating was shown to be fully mineralized; this crystallographic habit was retained at 36 weeks, when particle release from the tested material was lower compared to the controls. The XRD pattern of bone apatite surrounding the coating particles was unmodified. The innovative coating did not alter the mineralization process at the interface. It improved implant osteointegration, mainly due to a limited release of particles. Consequently, clinical performance of external fixation treatment could be improved by modifying the chemical composition of the implant surface. © 1998 John Wiley & Sons, Inc. J Biomed Mater Res, 40, 86-91, 1998.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...