Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (2)
  • Chemistry  (1)
  • FAULT DETECTION  (1)
  • Heuristic algorithm
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    International journal of parallel programming 27 (1999), S. 289-323 
    ISSN: 1573-7640
    Keywords: MULTIPROCESSOR ; DATA FLOW ; FAULT DETECTION ; FAULT LOCATION ; ALGORITHMS
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Notes: Abstract Algorithm-Based Fault Tolerance (ABFT) is a well known technique for achieving fault and error detection in multiprocessor systems. We examine several issues concerning ABFT systems when the data flow information for the underlying multiprocessor computation is available. Our results show that this finergrained information can be exploited to obtain test schemes involving fewer checks, in some cases, dramatically fewer checks. We address both the analysis and design of ABFT systems when the data flow information is available. The analysis problem for a given ABFT system is to determine the fault detectability and the fault locatability (maximum number of detectable and locatable faulty processors) of the system. We show that the analysis problem can be solved efficiently when the number of faults is fixed. We also address the computational difficulty of this problem when the number of faults is not fixed. The design problem is concerned with the construction of a minimal collection of checks which can detect or locate a specified number of faults for a given multiprocessor computation. We examine some special classes of data flow graphs and establish upper and lower bounds on the number of checks needed to detect or locate a given number of faults. We also address the computational difficulty of this design problem for several cases.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 42 (1998), S. 312-320 
    ISSN: 0021-9304
    Keywords: cardiovascular stents ; hydrogels ; poly(ethylene glycol) ; poly(propylene fumarate) ; biodegradation ; tissue engineered implants ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: The degradation of poly(propylene fumarate-co-ethylene glycol) hydrogels was examined in vitro in phosphate-buffered saline at pH 7.4 and in vivo in a subcutaneous rat model. These hydrogels have potential application as biodegradable, injectable cardiovascular stents, and, as such, their mass loss, dimensional changes, mechanical properties, morphology, and biocompatiblity over a 12-week time course were evaluated. Three formulations were fabricated: one base formulation consisting of 25% (w/w) PEG, molecular weight 4,600; one high weight percent PEG formulation with 50% (w/w) PEG; and one high molecular weight PEG formulation, molecular weight 10,500. All three formulations showed significant weight loss (between 40 and 60%) on the first day due to leaching of the uncrosslinked fraction. Further weight loss was observed only for the low weight percent PEG copolymers in the in vivo case, and a slight increase in volume was observed due to degradative swelling. The mechanical properties of the P(PF-co-EG) hydrogels decreased significantly in the first 3 weeks, showing the biphasic pattern typical of bulk degradation. In vitro, the hydrogels showed at least a 20% retention of their initial ultimate tensile stress after 3 weeks. The dynamic mechanical properties showed similar retention, with the in vivo mechanical properties differing from the in vitro properties only after 6 weeks of degradation. Differences in PEG molecular weight appeared to have little effect, but increasing the weight percent PEG decreased the rate of degradation both in vitro and in vivo. The morphology of the copolymer films, based on scanning electron microscopy observation, was not significantly different either among the three formulations or over the time course of the study, suggesting there were no macroscopic structural changes during this time period. The P(PF-co-EG) hydrogels demonstrated good initial biocompatibility, showing responses characteristic of biomaterial implants. © 1998 John Wiley & Sons, Inc. J Biomed Mater Res, 42, 312-320, 1998.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...