Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Macromolecules 19 (1986), S. 2174-2182 
    ISSN: 1520-5835
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 88 (1988), S. 1337-1342 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A stochastic model is presented to predict the molecular weight dependence of the polymer fracture energy and strength for polymers with molecular weights higher than the critical value corresponding to the onset of entanglements. A chain scission criterion is invoked for the polymer chain segments crossing the fracture plane and being entangled about it. The presence of dangling ends is shown to be responsible for the change of the fracture properties with molecular weight. The predictions of the model agree with experimental data of the fracture energy and strength of poly(methyl methacrylate) and polystyrene.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 31 (2001), S. 171-181 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Photoinitiated polymerization and polymer crosslinking are viable strategies for biomaterial synthesis because of the mild temperatures and neutral pH environments in which these reactions typically take place. This review summarizes the relevant theories as well as current status of photoinitiated polymerizations in biomaterials. Photoinitiation, photoinitiated polymerization, and photoinitiators are discussed with consideration toward the biological nature of the intended application. Recent investigations into biomaterials, including hydrogels, biodegradable materials, and hard tissue resorbable scaffolds are presented. Lastly, studies of cell interactions with photoinitiated biomaterials are discussed. The work herein illustrates the potential use of photoinitiated polymerization in the development of novel biomaterials for tissue engineering.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature medicine 1 (1995), S. 1322-1324 
    ISSN: 1546-170X
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Medicine
    Notes: [Auszug] Skeletal deficiencies resulting from trauma, tumours or abnormal development frequently require surgical intervention to restore normal tissue function. Even though current surgical treatments are often successful, all have associated problems and limitations. The limited supply of autograft tissue ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 8 (1989), S. 833-834 
    ISSN: 1573-4811
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Pharmaceutical research 17 (2000), S. 497-504 
    ISSN: 1573-904X
    Keywords: tissue engineering ; growth factors ; controlled release ; bone ; nerve ; liver
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract A tissue-engineered implant is a biologic-biomaterial combination in which some component of tissuehas been combined with a biomaterial to create a device for the restoration or modification of tissue ororgan function. Specific growth factors, released from a delivery device or from co-transplanted cells,would aid in the induction of host paraenchymal cell infiltration and improve engraftment of co-deliveredcells for more efficient tissue regeneration or ameliorate disease states. The characteristic properties ofgrowth factors are described to provide a biological basis for their use in tissue engineered devices. Theprinciples of polymeric device development for therapeutic growth factor delivery in the context of tissueengineering are outlined. A review of experimental evidence illustrates examples of growth factor deliveryfrom devices such as micropaticles, scaffolds, and encapsulated cells, for their use in the applicationareas of musculoskeletal tissue, neural tissue, and hepatic tissue.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 24 (1989), S. 1612-1616 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract A new model is presented to predict the fracture energy of polymers with molecular weights smaller than the threshold value for the formation of chain entanglements. A fracture mechanism is assumed that calls for the sliding of the polymer chains in a microscopic craze at the crack tip. The plastic work is related to the chain interpenetration distance, which has been derived from the solution of the Fokker-Planck equation. The predictions of the model agree with experimental data of the fracture energy of polystyrene.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 42 (1993), S. 716-723 
    ISSN: 0006-3592
    Keywords: prevascularization ; cell transplantation ; biodegradable polymers ; organ regeneration ; tissue engineering ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Highly porous biocompatible and biodegradable polymers in the form of cylindrical disks of 13.5 mm diameter were implanted in the mesentery of male syngeneic Fischer rats for a period of 35 days to study the dynamics of tissue ingrowth and the extent of tissue vascularity, and to explore their potential use as substrates for cell transplantation. The advancing fibrovascular tissue was characterized from histological sections of harvested devices by image analysis techniques. The rate of tissue ingrowth increased as the porosity and/or the pore size of the implanted devices increased. The time required for the tissue to fill the device depended on the polymer crystallinity and was smaller for amorphous polymers. The vascularity of the advancing tissue was consistent with time and independent of the biomaterial composition and morphology. Poly(L-lactic acid) (PLLA) devices of 5 mm thickness, 24.5% crystallinity, 83% porosity, and 166 μm median pore diameter were filled by tissue after 25 days. However, the void volume of prevascularized devices (4%) was minimal and not practical for cell transplantation. In contrast, for amporphous PLLA devices of the same dimensions, and the similar porosity of 87% and median pore diameter of 179 μm, the tissue did not fill completely prevascularized devices, and an appreciable percentage (21%) of device volume was still available for cell engraftment after 25 days of implantation. These studies demonstrate the feasibility of creating vascularized templates of amorphous biodegradable polymers for the transplantation of isolated or encapsulated cell populations to regenerate metabolic organs and tissues. © 1993 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 50 (1996), S. 443-451 
    ISSN: 0006-3592
    Keywords: osteoblast ; migration ; poly(αhydroxy esters) ; poly(DL-lactic-co-glycolic acid) ; PLGA ; biodegradable polymers ; tissue engineering ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: We investigated the migration of rat calvaria osteoblast populations on poly(α-hydroxy ester) films for up to 14 days to determine effects of substrate composition and culture conditions on the migratory characteristics of osteoblasts. Initial osteoblast culture conditions included cell colonies formed by seeding a high (84,000 cells/cm2) or low (42,000 cells/cm2) density of isolated osteoblasts on the polymer films, and bone tissue cultures formed by plating bone chips directly on the substrates. High density osteoblast colonies cultured and allowed to migrate and proliferate radially on 85:15 poly(DL-lactic-co-glycolic acid) (PLGA) films, 75:25 PLGA films, and tissue culture polystyrene controls demonstrated that the copolymer ratio in the polymer films did not affect the rate of increase in substrate surface area (or culture area) covered by the growing cell colony. However, the rate of increase in culture area was dependent on the initial osteoblast seeding density. Initial cell colonies formed with a lower osteoblast seeding density on 75:25 PLGA resulted in a lower rate of increase in culture area, specifically 4.9 ± 0.3 mm2/day, versus 14.1 ± 0.7 mm2/day for colonies seeded with a higher density of cells on the same polymer films. The proliferation rate for osteoblasts in the high and low density seeded osteoblast colonies did not differ, whereas the proliferation rate for the osteoblasts arising from the bone chips was lower than either of these isolated cell colonies. Confocal and light microscopy revealed that the osteoblast migration occurred as a monolayer of individual osteoblasts and not a calcified tissue front. These results demonstrated that cell seeding conditions strongly affect the rates of osteoblast migration and proliferation on biodegradable poly(α-hydroxy esters). © 1996 John Wiley & Sons, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 50 (1996), S. 357-364 
    ISSN: 0006-3592
    Keywords: hydrogel ; cell immobilization ; surface adhesion ; matrix entrapment ; microencapsulation ; immunoisolation ; bioartificial organs ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Hydrogels are being investigated for mammalian cell immobilization. Their material properties can be engineered for biocompatibility, selective permeability, mechanical and chemical stability, and other requirements as specified by the application including uniform cell distribution and a given membrane thickness or mechanical strength. These aqueous gels are attractive for analytical and tissue engineering applications and can be used with immobilization in therapies for various diseases as well as to generate bioartificial organs. Recent advances have broadened the use of hydrogel cell immobilization in biomedical fields. To provide an overview of available technology, this review surveys the current developments in immobilization of mammalian cells in hydrogels. Discussions cover hydrogel requirements for use in adhesion, matrix entrapment, and microencapsulation, the respective processing methods, as well as current applications. © 1996 John Wiley & Sons, Inc.
    Additional Material: 2 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...