Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (2)
  • Chemistry  (1)
  • bag-1  (1)
  • 1
    ISSN: 0006-3592
    Keywords: c-jun ; cell cycle ; apoptosis ; antisense ; growth deprivation ; F-MEL ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: F-MEL cells were transfected with the c-jun antisense gene located downstream of a glucocorticoid-inducible MMTV promoter, and the obtained cells were named c-jun AS cells. When the c-jun AS cells were treated with dexamethasone (DEX) in DMEM supplemented with 10% serum, the growth of the cells was completely suppressed for a duration of 16 days with a high cell viability exceeding 86%. The c-jun expression in the c-jun AS cells was suppressed moderately in the absence of DEX and strongly in the presence of DEX. The c-jun AS cells grew well and reached a density of 106 cells/mL without supplementation of any serum components. Viability was greater than 80% after the cells had been cultured for 8 days in the absence of DEX. The c-jun AS cells stayed at a constant cell density and high viability above 80% for 8 days when they were cultured in the presence of DEX under serum deprivation. In contrast, the wild type F-MEL cells were unable to grow and died by apoptosis in 3 days under serum deprivation. Internucleosomal cleavage of DNA, a landmark of apoptosis, was clearly detectable. Thus the c-jun AS cell line that is resistant to apoptosis induced by serum deprivation and can reversibly and viably be growth-arrested was established. A dual-signal model was proposed to explain the experimental result, the interlinked regulation of apoptosis, and growth by c-jun.© 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58:65-72, 1998.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-0778
    Keywords: anti-apoptotic ; bag-1 ; bcl-2 ; cell cycle arrest ; excess thymidine ; serum limitation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Hybridoma 2E3-O cells were transfected with bcl-2 alone or with bcl-2 and bag-1 in combination. The bcl-2/bag-1 transfectant survived maintaining viability above 75% for almost 5 days when the cells were treated with excess (30 mM) thymidine for arresting cell cycle, whereas the mock transfectant survived for only 2 days, and the bcl-2 alone transfectant lived for 4 days. Owing to this extended viable culture period, the bcl-2/bag-1 transfectant produced twofold amount of antibody in comparison with the mock transfectant in non-proliferating state prepared by the excess thymidine treatment. When their proliferation was arrested by serum limitation, the bcl-2/bag-1 transfectant and the bcl-2 alone transfectant survived for 3 days maintaining viability above 75% while the mock transfectant survived only 1 day. The bcl-2/bag-1 transfectans produced the antibody at the rate three times as high as the bcl-2 alone transfectant and the mock transfectant in non-proliferating state established by serum limitation. Such genetic engineering of hybridoma cells for improving survival in the non-proliferating state will be useful for using nutrients in culture medium efficiently to produce antibody, since nutrients could be diverted from cell proliferation to antibody production in such non-proliferating viable cell culture.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...