Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1106
    Keywords: Key words Fascia dentata ; Mossy cells ; Interneurons ; Lucifer yellow ; Phaseolus vulgaris leucoagglutinin ; Septohippocampal projection ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Mossy cells in the hilus of the rat dentate gyrus are the main cells of origin of the dentate commissural and associational projections. They project along the septotemporal axis of the dentate gyrus and may thus influence the hippocampal signal flow in a longitudinal direction. To analyze the septal innervation of these hilar neurons, anterograde tracing with Phaseolus vulgaris leucoagglutinin (PHAL) was used in combination with intracellular labeling of mossy cells (Lucifer yellow). Anterogradely labeled septal fibers impinge on proximal and distal dendrites of hilar mossy cells but spare the cell body. In contrast, numerous aspiny hilar neurons, presumably GABAergic interneurons, receive a septal innervation on their somata and proximal primary dendrites. These data demonstrate that septal fibers show a specificity for the dendritic segments of hilar mossy cells. Since mossy cells project predominantly to adjacent hippocampal lamellae, the activity of adjacent portions of the dentate gyrus may be influenced by the septal input onto these neurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 120 (1998), S. 399-402 
    ISSN: 1432-1106
    Keywords: Key words Neurotrophin ; Sprouting ; Dentate gyrus ; Mossy fibers ; Timm staining ; Mouse
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  In human temporal lobe epilepsy, a loss of hilar neurons followed by the sprouting of recurrent mossy fiber collaterals and the reinnervation of free synaptic sites on granule cell dendrites are discussed as possible mechanisms underlying hippocampal hyperexcitability. Dentate granule cells have been shown to upregulate brain-derived neurotrophic factor (BDNF) as well as TrkB, the high-affinity receptor for BDNF, in response to limbic seizures. This raised the possibility that BDNF is an important factor in hippocampal mossy fiber sprouting. Here we have used slice cultures of hippocampus, in which mossy fibers sprout and form a supragranular plexus in response to granule cell deafferentation, and have compared cultures from early postnatal BDNF-deficient mice and wild-type mice. We demonstrate that there is sprouting of supragranular mossy fibers in cultured slices from both BDNF knock-out and wild-type mice. We conclude that BDNF is not an essential factor for mossy fiber sprouting. However, our data do not exclude a role for BDNF in mossy fiber sprouting in wild-type mice, as compensatory mechanisms might have become effective in the mutant.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...