Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (3)
  • Oryza sativa L.  (2)
  • Gelatinization temperature  (1)
  • 1
    ISSN: 1432-2242
    Keywords: Key words Rice quality ; Amylose content ; Gel consistency ; Gelatinization temperature ; Genetic analysis ; Molecular marker
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  The cooking and eating quality of the rice grain is one of the most serious problems in many rice-producing areas of the world. In this study, we conducted a molecular marker-based genetic analysis of three traits, amylose content (AC), gel consistency (GC) and gelatinization temperature (GT), that are the most important constituents of the cooking and eating quality of rice grains. The materials used in the analysis included F2 seeds, an F2:3 population, and an F9 recombinant inbred-line population from a cross between the parents of ’Shanyou 63’, the most widely grown hybrid in rice production in China. Segregation analyses of these three generations showed that each of the three traits was controlled by a single Mendelian locus. Molecular marker-based QTL (quantitative trait locus) analyses, both by one-way analysis of variance using single marker genotypes and by whole-genome scanning with MAPMAKER/QTL, revealed a single locus that controls the expression of all three traits. This locus coincided with the Wx region on the short arm of chromosome 6, indicating that all three traits were either controlled by the Wx locus or by a genomic region tightly linked to this locus. This finding has provided clues to resolving the molecular bases of GC and GT in future studies. The results also have direct implications for the quality improvement of rice varieties.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1572-9788
    Keywords: Oryza sativa L. ; extent of genotypic divergence ; heterosis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The magnitude of heterosis in F1 hybrids is related not only to the performance of parents per se but also to the genetic diversity between two parents. The extent of genotypic divergence between hybrid rice parents was investigated at the molecular level, using two subsets of rice materials: a subset of doubled haploid (DH) lines derived from an Indica × Japonica cross (Gui630/02428) and another subset of Indica or Japonica lines representative of a broad spectrum of the Asian cultivated rice gene pool, including landraces, primitive cultivars, historically important cultivars, modern elite cultivars, super rice and parents of superior hybrids. 57 entries deliberately selected from the 81-DH lines (in total) were testcrossed to two widely used rice lines in China, photoperiod-sensitive genic male sterile (PGMS) N422s and thermo-sensitive genic male sterile (TGMS) Peiai64s. Results of the two sets of test-cross F1 populations showed congruently that parental genotypic divergence has a relatively low impact on heterosis for the two yield components, i.e., panicle number and 1000-grain weight, but it has a great bearing on fertility parameters, i.e., filled grains per plant and seedset. Heterosis for grain yield in the two test-cross populations exhibited a sharp maximum when the proportion of Japonica alleles in the male parent was between 50 and 60%, so was the heterosis for fertility parameters correspondingly. Thus fertility parameters were the most sensitive and important factors which were influenced by the extent of parental genotypic divergence. Moreover, our results showed that parents with moderate extent of genotypic divergence played an important role in the use of inter-subspecific rice heterosis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1572-9788
    Keywords: differential display ; gene expression ; hybrid vigor ; molecular marker heterozygosity ; Oryza sativa L.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Using differential display analysis, we assessed the patterns of differential gene expression in hybrids relative to their parents in a diallel cross involving 8 elite rice lines. The analysis revealed several patterns of differential expression including: (1) bands present in one parent and F1 but absent in the other parent, (2) bands observed in both parents but not in the F1, (3) bands occurring in only one parent but not in the F1 or the other parent, and, (4) bands detected only in the F1 but in neither of the parents. Relationships between differential gene expression and heterosis and marker heterozygosity were evaluated using data for RFLPs, SSRs and a number of agronomic characters. The analysis showed that there was very little correlation between patterns of differential expression and the F1 means for all six agronomic traits. Differentially expressed fragments that occurred only in one parent but not in the other parent or in F1 in each of the respective crosses were positively correlated with heterosis and heterozygosity. And conversely, fragments that were detected in F1s but in neither of the respective parents were negatively correlated with heterosis and heterozygosity. The remaining patterns of differential expression were not correlated with heterosis or heterozygosity. The relationships between the patterns of differential expression and heterosis observed in this study were not consistent with expectations based on dominance or overdominance hypotheses.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...